Topic Review
3D Braiding Technology
3D braiding technologies enable the production of structures with complex geometry, which are often used for lightweight solutions, for example in automotive engineering. In addition, medical technology offers wide-ranging applications for 3D braiding technology. 3D braided structures are defined as those with yarns that intersect in all three spatial directions. 3D braiding processes allow the fiber orientation to be easily influenced, thus ensuring high strength and stiffness with reduced mass.
  • 2.0K
  • 25 Aug 2021
Topic Review
Advancements in Electrospun Anode Materials
Electronic devices commonly use rechargeable Li-ion batteries due to their potency, manufacturing effectiveness, and affordability. Electrospinning technology offers nanofibers with improved mechanical strength, quick ion transport, and ease of production, which makes it an attractive alternative to traditional methods. The electrospinning technique can be used to generate nanofibers for battery separators, the electrodes with the advent of flame-resistant core-shell nanofibers.  The anode is the negative electrode of the electrochemical cell. There are three mechanisms of energy storage for the anode.
  • 293
  • 04 Apr 2023
Topic Review
Application of Geopolymers in Adsorption
Geopolymer is a porous inorganic material with a three-dimensional mesh structure, good mechanical properties, a simple preparation process (no sintering) and a low economic cost, and it is environmentally friendly. Geopolymer concrete has been widely used in the construction field, and many other studies have revealed that geopolymer will become one of the most promising inorganic materials with unique structure and properties. Geopolymer has a three-dimensional mesh structure that provides the geopolymer with high porosity and a significant number of mesopores that enhance the adsorption capacity by providing more exposed binding sites on the surface. The high mesoporous structure, high porosity, and three-dimensional mesh structure give geopolymers a larger specific surface area, which increases the contact sites with pollutants and impurities. 
  • 630
  • 14 Sep 2022
Topic Review
Approaches to Preceramic Polymer Fiber Fabrication
The demand for lightweight, high-modulus, and temperature-resistant materials for aerospace and other high-temperature applications has contributed to the development of ceramic fibers that exhibit most of the favorable properties of monolithic ceramics. The preceramic polymer requirements for a fiber concoction include: (1) appropriate rheology for non-Newtonian flows of materials and appropriate viscosity during rotation; (2) reactivity to fuse the fibers for subsequent pyrolysis; (3) controlled degradation during pyrolysis to prevent disorders of the structure, such as scattered material, and to produce high-density fibers with high ceramic performance; (4) controlled formation of nano- or microstructures.
  • 690
  • 15 Jul 2022
Topic Review
Biomass Fly Ash-Based Geopolymers
The production of conventional cement involves high energy consumption and the release of substantial amounts of carbon dioxide (CO2), exacerbating climate change. Additionally, the extraction of raw materials, such as limestone and clay, leads to habitat destruction and biodiversity loss. Geopolymer technology offers a promising alternative to conventional cement by utilizing industrial byproducts and significantly reducing carbon emissions.
  • 391
  • 10 Aug 2023
Topic Review
CAD/CAM Ceramics
CAD/CAM ceramics present a promising alternative to metal-ceramic fixed dental prostheses.
  • 723
  • 23 Jun 2021
Topic Review
Carbonation of Concrete
As one of the major causes of concrete deterioration, the carbonation of concrete has been widely investigated over recent decades. In recent years, the effect of mechanical load on carbonation has started to attract more attention. The load-induced variations in crack pattern and pore structure have a significant influence on CO2 transport which determines the carbonation rate. 
  • 1.2K
  • 07 Dec 2021
Topic Review
Cement Asphalt Emulsion Mortar Composites
CA mortar (sometimes abbreviated to CAM) is one of the major construction materials for slab ballastless track in high-speed railways; it is an intermediate layer flung within the space between the track slab and the trackbed (as depicted in) of CRTS I and CRTS II. Cement and asphalt mortar is an organic–inorganic composite material primarily composed of asphalt emulsion, cement, sand, water, and other chemical admixtures. This composite material possesses fascinating properties that are different from both concrete and asphalt material alone because it couples the strength of cement as well as the flexibility of asphalt material.
  • 911
  • 03 Nov 2021
Topic Review
Cement Self-Healing
Self-healing materials can repair corrosion, cracks, scratches, and other alterations independently and autonomously. This technology significantly benefits the economy, with direct consequences for social improvement in certain areas of science such as chemistry, energy, etc., by substantially increasing the life expectancy of structures and self-healing materials and significantly boosting the viability of industries as cracks and wear, in general, spontaneously disappear. 
  • 194
  • 09 Aug 2023
Topic Review
Ceramic Nanostructured Coatings
Ceramic nanocoatings are widely used in many applications such as engine valves, boiler parts, automotive body parts, orthopaedic implants, etc., due to their excellent resistance to corrosion, oxidation and wear, as compared to metals, especially in high-temperature applications. They also have excellent thermal and electrical insulation properties.
  • 525
  • 29 Apr 2022
  • Page
  • of
  • 7