Topic Review
Materials Science, Glasses
Glasses are solid amorphous materials which transform into liquids upon heating through the glass transition. 
  • 496
  • 27 Apr 2021
Topic Review
3D Braiding Technology
3D braiding technologies enable the production of structures with complex geometry, which are often used for lightweight solutions, for example in automotive engineering. In addition, medical technology offers wide-ranging applications for 3D braiding technology. 3D braided structures are defined as those with yarns that intersect in all three spatial directions. 3D braiding processes allow the fiber orientation to be easily influenced, thus ensuring high strength and stiffness with reduced mass.
  • 447
  • 25 Aug 2021
Topic Review
Magnetoelectric Sensors
Multiferroic magnetoelectric (ME) materials with the capability of coupling magnetization and electric polarization have been providing diverse routes towards functional devices and thus attracting ever-increasing attention. The typical device applications include sensors, energy harvesters, magnetoelectric random access memories, tunable microwave devices and ME antennas etc. Among those application scenarios, ME sensors are specifically focused in this review article. We begin with an introduction of materials development and then recent advances in ME sensors are overviewed. Engineering applications of ME sensors are followed and typical scenarios are presented. Finally, several remaining challenges and future directions from the perspective of sensor designs and real applications are included.
  • 398
  • 07 Jun 2021
Topic Review
Clay Bricks
Clay bricks are extensively used as building material worldwide. Natural soil deposits are in constant reduction due to the frequent use of clay to manufacture bricks. About 1600 billion bricks are produced annually by the consumption of millions of tons of natural resources.
  • 280
  • 18 Sep 2021
Topic Review
Red Mud resources for metal
Various scopes are suggested for the utilization of red mud to maintain a sustainable environment. The potential use of red mud covers the valuable metal recovery that could emphasize the use of red mud as a resource. Red mud could act as reduced slag in the metallurgical field for the extraction of minerals and metals for upscale application. Although many studies have revealed the potential utilization of red mud, most of them are only limited to a lab-scale basis. 
  • 232
  • 09 Jul 2021
Topic Review
Hybrid Graphene/Fiber Reinforced Cementitious Composites
Graphene with fascinating properties has been deemed as an excellent reinforcement for cementitious composites, enabling construction materials to be smarter, stronger, and more durable. However, some challenges such as dispersion issues and high costs, hinder the direct incorporation of graphene-based reinforcement fillers into cementitious composites for industrial production. The combination of graphene with conventional fibers to reinforce cement hence appears as a more promising pathway especially towards the commercialization of graphene for cementitious materials.  This entry introduces the preparation and the enhancement of hybrid graphene-fiber reinforced cementitious composites.
  • 211
  • 09 Oct 2021
Topic Review
Carbonation of Concrete
As one of the major causes of concrete deterioration, the carbonation of concrete has been widely investigated over recent decades. In recent years, the effect of mechanical load on carbonation has started to attract more attention. The load-induced variations in crack pattern and pore structure have a significant influence on CO2 transport which determines the carbonation rate. 
  • 200
  • 07 Dec 2021
Topic Review
XPS Study Calcining Mixtures of Brucite with Titania
The X-ray stimulation photospectrometry technique known as XPS is applied to determine chemical bond characteristics of organic and inorganic substances. On the other hand, the processes of chemical substance formation can be energetically activated by various mechanisms, one of them being thermal activation. Magnesium oxide (magnesia, MgO) and titanium oxide (titania, TiO2) are substances that, due to their chemical and energetic nature, can chemically react to form other chemical compounds when subjected to relatively high temperatures. During the sintering of MgO it is feasible to use some additives such as TiO2 to improve some properties, but during the process it is possible the formation of substances that limit its final application at high temperature. This review focuses on the relatively high-temperature synthesis and characterization of compounds based on MgO:TiO2 in a 50:50 wt% ratio, using the XPS technique and supported by XRD.
  • 199
  • 22 Mar 2022
Topic Review
Crystallization of LiNbO3
Due to its piezoelectric, ferroelectric, nonlinear optics, and pyroelectric properties, LiNbO3 crystal has found its wide applications in surface acoustic wave (SAW) devices, optical waveguides, optical modulators, and second-harmonic generators (SHG). LiNbO3 crystallized as R3c space group below Curie temperature shows spontaneous polarization that leads to its ferroelectric and piezoelectric properties. Physical and chemical characteristics of LiNbO3 are mainly determined by Li/Nb ratio, impurity cations, vacancies in a cation sublattice. Different sizes of LiNbO3 ranging from nanoscale and microscale to bulk size have been synthesized by solid state method, hydrothermal/solvothermal method, Czochralski (Cz) growth method, etc. Most basic and applied studies of LiNbO3 focus on its bulk single crystal.
  • 197
  • 17 Dec 2021
Topic Review
Packaging Materials
The entry packaging materials is intended to summarize the recent progress in the work of fractal theory in packaging material to provide important insights into applied research on fractal in packaging materials. The fractal analysis methods employed for inorganic materials such as metal alloys and ceramics, polymers, and their composites are reviewed from the aspects of fractal feature extraction and fractal dimension calculation methods. Through the fractal dimension of packaging materials and the fractal in their preparation process, the relationship between the fractal characteristic parameters and the properties of packaging materials is discussed. The fractal analysis method can qualitatively and quantitatively characterize the fractal characteristics, microstructure, and properties of a large number of various types of packaging materials. 
  • 154
  • 06 Apr 2021
  • Page
  • of
  • 3