Topic Review
Flavonoids—Classification and Natural Sources
       Flavonoids are small molecules, produced de novo by plants as secondary metabolites in response to diverse biotic and abiotic factors. These chemical compounds have a broad spectrum of established health-promoting effects. They are due to their antioxidative, anti-inflammatory, anti-mutagenic, and anti-carcinogenic properties coupled with their capacity to modulate key cellular enzyme functions. Flavonoids are widely distributed chemical compounds in the plant kingdom. Plants are therefore an inexhaustible source of flavonoids.
  • 2464
  • 02 Nov 2020
Topic Review
Antibacterial Designs for Implantable Medical Devices
The uses of implantable medical devices are safer and more common since sterilization methods and techniques were established a century ago; however, device-associated infections (DAIs) are still frequent and becoming a leading complication as the number of medical device implantations keeps increasing.
  • 2329
  • 01 Aug 2022
Topic Review
Lipid-Based Nanoparticles
COVID-19 vaccines have been developed with unprecedented speed which would not have been possible without decades of fundamental research on delivery nanotechnology. Lipid-based nanoparticles have played a pivotal role in the successes of COVID-19 vaccines and many other nanomedicines, such as Doxil® and Onpattro®, and have therefore been considered as the frontrunner in nanoscale drug delivery systems. In this review, we aim to highlight the progress in the development of these lipid nanoparticles for various applications, ranging from cancer nanomedicines to COVID-19 vaccines. The lipid-based nanoparticles discussed in this review are liposomes, niosomes, transfersomes, solid lipid nanoparticles, and nanostructured lipid carriers. We particularly focus on the innovations that have obtained regulatory approval or that are in clinical trials. We also discuss the physicochemical properties required for specific applications, highlight the differences in requirements for the delivery of different cargos, and introduce current challenges that need further development. This review serves as a useful guideline for designing new lipid nanoparticles for both preventative and therapeutic vaccines including immunotherapies.
  • 1626
  • 19 May 2021
Topic Review
Lech Pawlowski
Lech PAWŁOWSKI, professor emeritus of surface engineering at the University of Limoges has been active since more than 40 years in academia and industry in the field of films and coating manufacturing and treatment as well as their characterization for the application in electronics, mechanical and biomedical engineering
  • 1600
  • 04 Jul 2022
Topic Review
Stimuli-responsive materials
Smart or stimuli-responsive materials are an emerging class of materials used for tissue engineering and drug delivery. A variety of stimuli (including temperature, pH, redox-state, light, and magnet fields) are being investigated for their potential to change a material’s properties, interactions, structure, and/or dimensions. The specificity of stimuli response, and ability to respond to endogenous cues inherently present in living systems provide possibilities to develop novel tissue engineering and drug delivery strategies (for example materials composed of stimuli responsive polymers that self-assemble or undergo phase transitions or morphology transformations). Herein, smart materials as controlled drug release vehicles for tissue engineering are described, highlighting their potential for the delivery of precise quantities of drugs at specific locations and times promoting the controlled repair or remodeling of tissues.
  • 1421
  • 24 Jul 2020
Topic Review
Bio-composites are degradable, renewable, non-abrasive, and non-toxic, with comparable properties to those of synthetic fiber composites and used in many applications in various fields. Naturals fibers are abundant and have low harvesting costs with adequate mechanical properties. Hazards of synthetic fibers, recycling issues, and toxic byproducts are the main driving factors in the research and development of bio-composites. Bio-composites are fabricated by combining natural fibers in a matrix material. The matrix material can be biodegradable, non-biodegradable, or synthetic. Synthetic matrix materials, along with natural fibers, are used to form hybrid bio-composites.
  • 1305
  • 09 Mar 2021
Topic Review
Light cured dental composite resins
The photoinduced polymerization of monomers is currently an essential tool in various industries. The photopolymerization process plays an increasingly important role in biomedical applications. It is especially used in the production of dental composites. It also exhibits unique properties, such as a short time of polymerization of composites (up to a few seconds), low e tes with their limitations and disadvantages. nergy consumption, and spatial resolution (polymerization only in irradiated areas). This entry describes a short overview of the history and classification of different typical monomers and photoinitiating systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine, 1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental composites with their limitations and disadvantages.
  • 1291
  • 07 Oct 2020
Topic Review
Bioactive Glass
Bioactive glass (BAG) consist of known biocompatible and bioactive minerals, including fluorapatite (FAP), wollastonite, diopside, and tricalcium phosphate. A bioactive material can interact with the biological environment to elicit a specific biological response and they can be osteoconductive or osteoinductive. Bioactive Glasses are amorphous solids with the irregular organization of atoms, optically transparent, and brittle consisting of silica networks. They possesses bioactivity and antimicrobial properties as presented n following sections. The bioactivity of BAGs involves several steps; BAGs immediately undergo ionic dissolution and glass degradation via the exchange of H+ ions in the solution and Na+ and Ca2+ from the glass network. BAG exhibits antimicrobial properties against various pathogens, e.g pathogens associated with sinusitis and osteomyelitis.
  • 1259
  • 22 Oct 2020
Topic Review
Tissues to Implant Abutments
This entry is based on the fact that physical or biomechanical phenomena can cause biologic results. Implant-abutment connection structures determine the stability of soft tissue attachment to abutments. The bone responses to the strain that the stress is converted to, not the stress itself. Some implant-abutment materials and connection designs prevent the marginal bone loss by converting the stress to the strain stimulating bone apposition properly. These biomechanical interpretation of soft tissue seal and bone stimulation should be understood for the clinical long-term success of dental implants.
  • 1176
  • 27 Oct 2020
Topic Review
Application of electrospun nanocomposites on removal of harmful substances
Nanomaterials and nanotechnology will undoubtedly become core materials and technologies in advanced materials and technologies. In recent years, nanomaterials and nanotechnology have been widely used in environmental restoration due to their low cost, high efficiency, and other advantages. In this study, the high-performance polyurethane/rare earth (PU/RE) composite nanomaterials were fabricated via electrospinning. The electrospun nanomaterials for adsorption of volatile organic compounds (VOCs) in air was thoroughly investigated. The PU nanofiber containing 50 wt. % RE powder had the smallest fiber diameter of 356 nm; it also showed the highest VOC absorption capacity compared with other composite membranes, having an absorption capacity about three times greater than pure PU nanofibers.
  • 926
  • 29 Oct 2020
  • Page
  • of
  • 34