Topic Review
Tissue Nanotransfection Chips for In Vivo Tissue Reprogramming
Tissue nanotransfection (TNT), a cutting-edge technique of in vivo gene therapy, has gained substantial attention in various applications ranging from in vivo tissue reprogramming in regenerative medicine, and wound healing to cancer treatment. This technique harnesses the advancements in the semiconductor processes, facilitating the integration of conventional transdermal gene delivery methods—nanoelectroporation and microneedle technologies. TNT silicon chips have demonstrated considerable promise in reprogramming fibroblast cells of skin in vivo into vascular or neural cells in preclinical studies to assist in the recovery of injured limbs and damaged brain tissue.
  • 96
  • 25 Jan 2024
Topic Review
Mesenchymal Stem Cells in Autoimmune Diseases
Mesenchymal stem cells (MSCs) modulate immune responses and maintain self-tolerance. Their trophic activities and regenerative properties make them potential immunosuppressants for treating autoimmune and autoinflammatory diseases. MSCs are drawn to sites of injury and inflammation where they can both reduce inflammation and contribute to tissue regeneration. An increased understanding of the role of MSCs in the development and progression of autoimmune disorders has revealed that MSCs are passive targets in the inflammatory process, becoming impaired by it and exhibiting loss of immunomodulatory activity. MSCs have been considered as potential novel cell therapies for severe autoimmune and autoinflammatory diseases, which at present have only disease modifying rather than curative treatment options.
  • 138
  • 23 Jan 2024
Topic Review
Bone Cell Function and Importance
The main functions of bone tissue include: structural support; protection of internal organs and soft tissues from damage; locomotion; mineral storage; production of blood cells; endocrine regulation.
  • 115
  • 22 Jan 2024
Topic Review
Allogeneic CAR-T Therapy Technologies
Chimeric antigen receptor (CAR) T-cell therapy has become a real treatment option for patients with B-cell malignancies, while multiple efforts are being made to extend this therapy to other malignancies and broader patient populations. However, several limitations remain, including those associated with the time-consuming and highly personalized manufacturing of autologous CAR-Ts. Technologies to establish “off-the-shelf” allogeneic CAR-Ts with low alloreactivity are currently being developed, with a strong focus on gene-editing technologies. Although these technologies have many advantages, they have also strong limitations, including double-strand breaks in the DNA with multiple associated safety risks as well as the lack of modulation. As an alternative, non-gene-editing technologies provide an interesting approach to support the development of allogeneic CAR-Ts in the future, with possibilities of fine-tuning gene expression and easy development.
  • 101
  • 18 Jan 2024
Topic Review
Scaffolds and Biomaterials for Soft Tissue Engineering
The utilization of materials in medical implants, serving as substitutes for non-functional biological structures, supporting damaged tissues, or reinforcing active organs, holds significant importance in modern healthcare, positively impacting the quality of life for millions of individuals worldwide. Biodegradable metals, including zinc (Zn), magnesium (Mg), iron, and others, present a new paradigm in the realm of implant materials. Research focuses on developing optimized materials that meet medical standards, encompassing controllable corrosion rates, sustained mechanical stability, and favorable biocompatibility. Achieving these objectives involves refining alloy compositions and tailoring processing techniques to carefully control microstructures and mechanical properties. Among the materials under investigation, Mg- and Zn-based biodegradable materials and their alloys demonstrate the ability to provide necessary support during tissue regeneration while gradually degrading over time. Furthermore, as essential elements in the human body, Mg and Zn offer additional benefits, including promoting wound healing, facilitating cell growth, and participating in gene generation while interacting with various vital biological functions. 
  • 150
  • 10 Jan 2024
Topic Review
Biomaterials for Dry Eye Diseases Treatment
Dry eye disease (DED) is an emerging health issue affecting millions of individuals annually. Ocular surface disorders, such as DED, are characterized by inflammation triggered by various factors. This condition can lead to tear deficiencies, resulting in the desiccation of the ocular surface, corneal ulceration/perforation, increased susceptibility to infections, and a higher risk of severe visual impairment and blindness. The history of ophthalmic biomaterials is relatively short. The primary objective of advancing successive generations of biomaterials is to address the shortcomings of previous versions and enhance safety, effectiveness, and comfort. Innovations have been made to elevate quality standards and production efficiency, ultimately reducing costs. Market demands to enhance competitiveness and accessibility have further intensified the pressure to cut expenses. Ophthalmic biomaterials have evolved into highly sophisticated devices, significantly increasing their utility in recent years. These materials must fulfill several crucial requirements, such as delivering oxygen to tissues, managing refractive changes, safeguarding tissues during surgery, facilitating tissue integration, and modulating the healing process. The recent advancements in biomaterials for treating DED include scaffolds, nanosystems, hydrogels, and drug-eluting contact lenses.
  • 176
  • 09 Jan 2024
Topic Review
White Adipose Tissue
The immune and endocrine dysfunctions of white adipose tissue are a hallmark of metabolic disorders such as obesity and type 2 diabetes. In humans, white adipose tissue comprises distinct depots broadly distributed under the skin (hypodermis) and as internal depots (visceral). Depot-specific ASCs could account for visceral and subcutaneous adipose tissue properties, by regulating adipogenesis and immunomodulation. More importantly, visceral and subcutaneous depots account for distinct contributions to obesity and its metabolic comorbidities. Distinct ASCs subpopulations were also described in subcutaneous adipose tissue. Interestingly, the superficial layer closer to the dermis shows hyperplastic and angiogenic capacities, whereas the deep layer is considered as having inflammatory properties similar to visceral. 
  • 153
  • 29 Dec 2023
Topic Review
Smart Responsive Hydrogel Design for Chronic Wound Treatment
Chronic wounds are a major health challenge that require new treatment strategies. Hydrogels are promising drug delivery systems for chronic wound healing because of their biocompatibility, hydration, and flexibility. However, conventional hydrogels cannot adapt to the dynamic and complex wound environment, which involves low pH, high levels of reactive oxygen species, and specific enzyme expression. Therefore, smart responsive hydrogels that can sense and respond to these stimuli are needed. 
  • 211
  • 13 Dec 2023
Topic Review
CAR NK Cell Therapy for Metastatic Melanoma
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. 
  • 123
  • 06 Dec 2023
Topic Review
Biological Materials for Tissue-Engineered Vascular Grafts
The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome to obtain functional grafts with appropriate biological and mechanical properties. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, and materials from natural sources have recently gained more attention for vascular tissue engineering, as new strategies have been developed to solve the disadvantages related to their use.
  • 111
  • 06 Dec 2023
  • Page
  • of
  • 28