Topic Review
Translational Immuno-Oncology Research with Organoids
As the complexity of tumour microenvironment (TME) has called for more sophisticated human-based tumour models, organoids have allowed the dynamic study of spatiotemporal interactions between tumour cells and individual TME cell types. Here, the researchers discuss how organoids can study the TME across cancers and how these features may improve precision I/O. 
  • 190
  • 25 Apr 2023
Topic Review
TMDC Nanozymes: Application Perspective
Applications of TMDC NZs in different fields—starting from biosensing to different treatment fields like antibacterial, anti-inflammation activity and cancer therapy—are discussed in more details. 
  • 350
  • 29 Mar 2022
Topic Review
Tissue Nanotransfection Chips for In Vivo Tissue Reprogramming
Tissue nanotransfection (TNT), a cutting-edge technique of in vivo gene therapy, has gained substantial attention in various applications ranging from in vivo tissue reprogramming in regenerative medicine, and wound healing to cancer treatment. This technique harnesses the advancements in the semiconductor processes, facilitating the integration of conventional transdermal gene delivery methods—nanoelectroporation and microneedle technologies. TNT silicon chips have demonstrated considerable promise in reprogramming fibroblast cells of skin in vivo into vascular or neural cells in preclinical studies to assist in the recovery of injured limbs and damaged brain tissue.
  • 64
  • 25 Jan 2024
Topic Review
Tissue Engineering for Cancer Metastasis Therapeutics
Tissue engineering is a promising field for regenerative medicine that is likely to be able to provide rehabilitation procedures to patients who have undergone surgeries, such as mastectomy and other reconstructive procedures. Another important use of tissue engineering has emerged recently that involves the development of realistic and robust in vitro models of cancer metastasis, to aid in drug discovery and new metastasis therapeutics, as well as evaluate cancer biology at metastasis.
  • 36
  • 05 Mar 2024
Topic Review
Tissue Engineering Challenges for Cultivated Meat
Cultivated meat (CM) technology has the potential to disrupt the food industry—indeed, it is already an inevitable reality. This new technology is an alternative to solve the environmental, health and ethical issues associated with the demand for meat products. The global market longs for biotechnological improvements for the CM production chain. CM, also known as cultured, cell-based, lab-grown, in vitro or clean meat, is obtained through cellular agriculture, which is based on applying tissue engineering principles. In practice, it is first necessary to choose the best cell source and type, and then to furnish the necessary nutrients, growth factors and signalling molecules via cultivation media.
  • 300
  • 07 Apr 2023
Topic Review
Three-Dimensional Bioprinting Processes and Approaches
Three-dimensional (3D) bioprinting describes the use of 3D additive manufacturing techniques aimed to integrate biological materials, such as cells, growth factors, and other biochemicals and biomaterials, into a multi-layer composite using high-precision printing technologies that can mimic the structures of target tissues.
  • 182
  • 11 May 2023
Topic Review
The Role of MicroRNA 21 in Osteogenesis
MicroRNAs are short, single-stranded ribonucleic acids expressed endogenously in the body to regulate gene expression at the post-translational level, with exogenous microRNA offering an attractive approach to therapy. Among the myriad microRNA candidates involved in controlling bone homeostasis and remodeling, microRNA 21 (miR21) is the most abundant. 
  • 123
  • 26 Jul 2023
Topic Review
The Glymphatic System and Neuropathologies
The lack of a conventional lymphatic system that permeates throughout the entire human brain has encouraged the identification and study of alternative clearance routes within the cerebrum. In 2012, the concept of the glymphatic system, a perivascular network that fluidically connects the cerebrospinal fluid to the lymphatic vessels within the meninges via the interstitium, emerged. Although its exact mode of action has not yet been fully characterized, the key underlying processes that govern solute transport and waste clearance have been identified. 
  • 443
  • 02 Feb 2023
Topic Review
The Emergence of Organoids in Cellular Systems
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. 
  • 307
  • 30 May 2023
Topic Review
The Biomechanics of Cartilage
Articular cartilage (AC) sheathes joint surfaces and minimizes friction in diarthrosis. The resident cell population, chondrocytes, are surrounded by an extracellular matrix and a multitude of proteins, which bestow their unique characteristics. AC is characterized by a zonal composition (superficial (tangential) zone, middle (transitional) zone, deep zone, calcified zone) with different mechanical properties. An overview is given about different testing (load tests) methods as well as different modeling approaches.
  • 1.7K
  • 14 Apr 2021
  • Page
  • of
  • 28