Topic Review
Intergalactic Space
Outer space, or simply space, is the expanse that exists beyond the Earth and between celestial bodies. Outer space is not completely empty—it is a hard vacuum containing a low density of particles, predominantly a plasma of hydrogen and helium, as well as electromagnetic radiation, magnetic fields, neutrinos, dust, and cosmic rays. The baseline temperature of outer space, as set by the background radiation from the Big Bang, is 2.7 kelvins (−270.45 °C; −454.81 °F). The plasma between galaxies accounts for about half of the baryonic (ordinary) matter in the universe; it has a number density of less than one hydrogen atom per cubic metre and a temperature of millions of kelvins. Local concentrations of matter have condensed into stars and galaxies. Studies indicate that 90% of the mass in most galaxies is in an unknown form, called dark matter, which interacts with other matter through gravitational but not electromagnetic forces. Observations suggest that the majority of the mass-energy in the observable universe is dark energy, a type of vacuum energy that is poorly understood. Intergalactic space takes up most of the volume of the universe, but even galaxies and star systems consist almost entirely of empty space. Outer space does not begin at a definite altitude above the Earth's surface. However, the Kármán line, an altitude of 100 km (62 mi) above sea level, is conventionally used as the start of outer space in space treaties and for aerospace records keeping. The framework for international space law was established by the Outer Space Treaty, which entered into force on 10 October 1967. This treaty precludes any claims of national sovereignty and permits all states to freely explore outer space. Despite the drafting of UN resolutions for the peaceful uses of outer space, anti-satellite weapons have been tested in Earth orbit. Humans began the physical exploration of space during the 20th century with the advent of high-altitude balloon flights. This was followed by manned rocket flights and, then, manned Earth orbit, first achieved by Yuri Gagarin of the Soviet Union in 1961. Due to the high cost of getting into space, manned spaceflight has been limited to low Earth orbit and the Moon. On the other hand, unmanned spacecraft have reached all of the known planets in the Solar System. Outer space represents a challenging environment for human exploration because of the hazards of vacuum and radiation. Microgravity also has a negative effect on human physiology that causes both muscle atrophy and bone loss. In addition to these health and environmental issues, the economic cost of putting objects, including humans, into space is very high.
  • 5.7K
  • 23 Nov 2022
Topic Review
Stress–Energy Tensor
The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.
  • 4.9K
  • 23 Nov 2022
Topic Review
Lithium-Ion Battery Fire Suppression
Lithium-ion Batteries (LiBs) hazards, techniques for mitigating risks, the suppression of LiB fires and identification of shortcomings for future improvement were thoroughly reviewed. Water is identified as an efficient cooling and suppressing agent and water mist is considered the most promising technique to extinguish LiBs fire. 
  • 4.7K
  • 29 Apr 2021
Topic Review
Gravity Well
A gravity well or gravitational well is a conceptual model of the gravitational field surrounding a body in space – the more massive the body, the deeper and more extensive the gravity well associated with it. The Sun is very massive, relative to other bodies in the Solar System, so the corresponding gravity well that surrounds it appears "deep" and far-reaching. The gravity wells of asteroids and small moons, conversely, are often depicted as very shallow. Anything at the center of mass of a planet or moon is considered to be at the bottom of that celestial body's gravity well, and so escaping the effects of gravity from such a planet or moon (to enter outer space) can be likened to "climbing out of the gravity well". The deeper a gravity well is, the more energy any space-bound "climber" must use to escape it. In astrophysics, a gravity well is specifically the gravitational potential field around a massive body. Other types of potential wells include electrical and magnetic potential wells. Physical models of gravity wells are sometimes used to illustrate orbital mechanics. Gravity wells are frequently confused with embedding diagrams used in general relativity theory, but the two concepts are distinctly separate and not directly related.
  • 4.6K
  • 12 Oct 2022
Topic Review
Normal Strain
In physics, deformation is the continuum mechanics transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body. A deformation can occur because of external loads, intrinsic activity (e.g. muscle contraction), body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc. Strain is related to deformation in terms of relative displacement of particles in the body that excludes rigid-body motions. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered. In a continuous body, a deformation field results from a stress field due to applied forces or because of some changes in the temperature field of the body. The relation between stress and strain is expressed by constitutive equations, e.g., Hooke's law for linear elastic materials. Deformations which cease to exist after the stress field is removed are termed as elastic deformation. In this case, the continuum completely recovers its original configuration. On the other hand, irreversible deformations remain. They exist even after stresses have been removed. One type of irreversible deformation is plastic deformation, which occurs in material bodies after stresses have attained a certain threshold value known as the elastic limit or yield stress, and are the result of slip, or dislocation mechanisms at the atomic level. Another type of irreversible deformation is viscous deformation, which is the irreversible part of viscoelastic deformation. In the case of elastic deformations, the response function linking strain to the deforming stress is the compliance tensor of the material.
  • 4.0K
  • 21 Oct 2022
Topic Review
Potential Flow Around a Circular Cylinder
In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a potential flow. Unlike a real fluid, this solution indicates a net zero drag on the body, a result known as d'Alembert's paradox.
  • 3.7K
  • 31 Oct 2022
Topic Review
Artificial Gravity in Fiction
Artificial gravity is a common theme in fiction, particularly science fiction.
  • 3.7K
  • 21 Oct 2022
Topic Review
Ecliptic Coordinate System
The ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets (except Mercury) and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the vernal (March) equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.
  • 3.5K
  • 19 Oct 2022
Topic Review
Andhaka
In Hindu mythology, Andhaka (Sanskrit: अन्धक, IAST: andhaka, lit. he who darkens) often refer to a malevolent asura who is killed by Shiva for trying to abduct Parvati. His story finds mention in various Hindu texts, including Matsya Purana, Kurma Purana, Linga Purana and Shiva Purana. He is believed to have thousand heads, two thousand eyes, arms and feet.
  • 3.4K
  • 17 Oct 2022
Biography
Eugen Goldstein
Eugen Goldstein (5 September 1850 – 25 December 1930) was a German physicist. He was an early investigator of discharge tubes, the discoverer of anode rays or canal rays, later identified as positive ions in the gas phase including the hydrogen ion or proton.[1] He was the great uncle of the violinists Mikhail Goldstein and Boris Goldstein. Goldstein was born in 1850 at Gleiwitz Upper Siles
  • 3.3K
  • 30 Dec 2022
  • Page
  • of
  • 35