Topic Review
Overview of Water Electrochemistry
Seawater is the most abundant supply of water and the ideal and cheapest electrolyte. Because it is a green and renewable chemical process, water electrolysis has earned a lot of interest among the different hydrogen production techniques. Basis of water electrolysis include general theoretical concepts: chemical, physical, and electrochemical concepts. Research has focused on the specific seawater electrolysis parameters: cathodic evolution of hydrogen; concurrent anodic evolution of oxygen and chlorine; specific seawater catalyst electrodes, and seawater electrolyzer efficiency. A sustainable technology development must also capitalize on known and emerging technologies; protecting the environment; utilization of green, renewable energies as sources of electricity; and above all, economic efficiency as a whole.
  • 848
  • 29 Nov 2022
Topic Review
Urban Solid Waste Management
Urban solid waste management is one of the most important local services, and its effective economic regulation can be a driver for the sector toward innovation, sustainability, and efficiency. Prominent economic topics include, among others, the analysis of the market structure, the regulatory frameworks, charging models of waste management services, economic efficiency, and environmental goals.
  • 848
  • 06 Jul 2021
Topic Review
True Range Multilateration
True range multilateration is a method to determine the location of a movable vehicle or stationary point in space using multiple ranges (distances) between the vehicle/point and multiple spatially-separated known locations (often termed 'stations'). True range multilateration is both a mathematical topic and an applied technique used in several fields. A practical application involving a fixed location is the trilateration method of surveying. Applications involving vehicle location are termed navigation when on-board persons/equipment are informed of its location, and are termed surveillance when off-vehicle entities are informed of the vehicle's location. Two slant-ranges from two known locations can be used to locate a third point in a two-dimensional Cartesian space (plane), which is a frequently applied technique (e.g., in surveying). Similarly, two spherical ranges can be used to locate a point on a sphere, which is a fundamental concept of the ancient discipline of celestial navigation — termed the altitude intercept problem. Moreover, if more than the minimum number of ranges are available, it is good practice to utilize those as well. This article addresses the general issue of position determination using multiple ranges. In two-dimensional geometry, it is known that if a point lies on two circles, then the circle centers and the two radii provide sufficient information to narrow the possible locations down to two – one of which is the desired solution and the other is an ambiguous solution. Additional information often narrow the possibilities down to a unique location. In three-dimensional geometry, when it is known that a point lies on the surfaces of three spheres, then the centers of the three spheres along with their radii also provide sufficient information to narrow the possible locations down to no more than two (unless the centers lie on a straight line). True range multilateration can be contrasted to the more frequently encountered (pseudorange) multilateration, which employs range differences to locate a (typically, movable) point. Pseudo range multilateration is almost always implemented by measuring times-of-arrival (TOAs) of energy waves. True range multilateration can also be contrasted to triangulation, which involves the measurement of angles. Multiple, sometimes overlapping and conflicting terms are employed for similar concepts – e.g., multilateration without modification has been used for aviation systems employing both true ranges and pseudo ranges. Moreover, different fields of endeavor may employ different terms. In geometry, trilateration is defined as the process of determining absolute or relative locations of points by measurement of distances, using the geometry of circles, spheres or triangles. In surveying, trilateration is a specific technique. The term true range multilateration is accurate, general and unambiguous. Authors have also used the terms range-range and rho-rho multilateration for this concept.
  • 847
  • 25 Oct 2022
Topic Review
Land Cover Change Detection
Land cover patterns in sub-Saharan Africa are rapidly changing. This study aims to quantify the land cover change and to identify its major determinants by using the Drivers, Pressures, State, Impact, Responses (DPSIR) framework in the Ethiopian Gozamin District over a period of 32 years (1986 to 2018). Satellite images of Landsat 5 (1986), Landsat 7 (2003), and Sentinel-2 (2018) and a supervised image classification methodology were used to assess the dynamics of land cover change. Land cover maps of the three dates, focus group discussions (FGDs), interviews, and farmers’ lived experiences through a household survey were applied to identify the factors for changes based on the DPSIR framework. Results of the investigations revealed that during the last three decades the study area has undergone an extensive land cover change, primarily a shift from cropland and grassland into forests and built-up areas. Thus, quantitative land cover change detection between 1986 and 2018 revealed that cropland, grassland, and bare areas declined by 10.53%, 5.7%, and 2.49%. Forest, built-up, shrub/scattered vegetation, and water bodies expanded by 13.47%, 4.02%, 0.98%, and 0.25%. Household surveys and focus group discussions (FGDs) identified the population growth, the rural land tenure system, the overuse of land, the climate change, and the scarcity of grazing land as drivers of these land cover changes. Major impacts were rural to urban migration, population size change, scarcity of land, and decline in land productivity. The outputs from this study could be used to assure sustainability in resource utilization, proper land use planning, and proper decision-making by the concerned government authorities.
  • 847
  • 27 Oct 2020
Topic Review
Major Impacts of Potentially Toxic Elements
Environmental contamination with a myriad of potentially toxic elements (PTEs) is triggered by various natural and anthropogenic activities. However, the industrial revolution has increased the intensity of these hazardous elements and their concentration in the environment, which, in turn, could provoke potential ecological risks. Additionally, most PTEs pose a considerable nuisance to human beings and affect soil, aquatic organisms, and even nematodes and microbes. 
  • 845
  • 13 Feb 2023
Topic Review
Climate Change and Agriculture
Climate change and agriculture are interrelated processes, both of which take place on a global scale. Global warming affects agriculture in a number of ways, including through changes in average temperatures, rainfall, and climate extremes (e.g., heat waves); changes in pests and diseases; changes in atmospheric carbon dioxide and ground-level ozone concentrations; changes in the nutritional quality of some foods; and changes in sea level. Climate change is already affecting agriculture, with effects unevenly distributed across the world. Future climate change will likely negatively affect crop production in low latitude countries, while effects in northern latitudes may be positive or negative. Animal agriculture, although lesser than vehicles, is also responsible for CO2 greenhouse gas production and a percentage of the world's methane, and future land infertility, and the displacement of local species. Agriculture contributes to climate change both by anthropogenic emissions of greenhouse gases and by the conversion of non-agricultural land such as forests into agricultural land. In 2010, agriculture, forestry and land-use change were estimated to contribute 20–25% of global annual emissions.. In 2020, the European Union's Scientific Advice Mechanism estimated that the food system as a whole contributed 37% of total greenhouse gas emissions, and that this figure was on course to increase by 30–40% by 2050 due to population growth and dietary change. A range of policies can reduce the risk of negative climate change impacts on agriculture and greenhouse gas emissions from the agriculture sector.
  • 846
  • 15 Nov 2022
Topic Review
Sierra Espuña Cenozoic Malaguide Basin
The Cenozoic Malaguide Basin from Sierra Espuña (Internal Betic Zone, S Spain) due to the qual-ity of outcropping, areal representation, and continuity in the sedimentation can be considered a key-basin. In the last 30 years, a large number of studies with very different methodological ap-proaches have been done in the area. Models indicate an evolution from passive margin to wedge-top basin from Late Cretaceous to Early Miocene. Sedimentation changes from limestone platforms with scarce terrigenous inputs, during the Paleocene to Early Oligocene, to the deep ba-sin with huge supplies of turbidite sandstones and conglomerates during the Late Oligocene to Early Miocene. The area now appears structured as an antiformal stack with evidence of synsedimentary tectonics.
  • 846
  • 19 Jan 2021
Topic Review
Remediation Solutions for AMDrainage
Acid Mine Drainage (AMD) is a toxic wastewater stream formed when oxygenated water comes into contact with exposed mine rock surfaces containing sulphide minerals. The formation of AMD is most prominent in abandoned mines where water accumulates in mine shafts and pits allowing exposure to sulphide minerals. The resulting AMD is typically characterised by a low pH with high concentrations of heavy metals and dissolved sulphate. When left untreated, AMD streams can cause severe environmental degradation, including the contamination of natural water bodies, destroying aquatic life and toxifying natural habitats. AMD remediation methods can be divided into two main categories, active treatment and passive treatment methods. Active treatment methods are characterised by process inputs such as energy, chemicals, labour and automated control, whereas passive remediation technologies require minimal process inputs and are mostly self-sustaining. Passive treatment methods are typically at source constructions comprising of a combination of naturally occurring geochemical, physical and biological processes.
  • 843
  • 04 Aug 2021
Topic Review
Global Warming and Dairy Cattle
Concerns about greenhouse gas (GHG) emissions from livestock and dairy farms, as well as their connection to global warming and climate change, have grown among the general public worldwide in recent years. Enteric methane (CH4) and other greenhouse gas emissions from ruminants can be mitigated in numerous ways.
  • 843
  • 10 Nov 2022
Topic Review
Structure-Borne Noise in Offshore Piling
The growing demand for renewable energy supply stimulates a drastic increase in the deployment rate of offshore wind energy. Offshore wind power generators are usually supported by large foundation piles that are driven into the seabed with hydraulic impact hammers or vibratory devices. The pile installation process, which is key to the construction of every new wind farm, is hindered by a serious by-product: the underwater noise pollution. 
  • 842
  • 14 Sep 2021
  • Page
  • of
  • 270
ScholarVision Creations