Topic Review
Electronic Circular Dichroism
This entry provides an introduction to the basic concepts of Electronic Circular Dichroism (ECD) spectroscopy. It describes the fundamental principles, instrumentation, and different approaches for interpreting and predicting ECD spectra. It surveys the most popular modern applications of ECD for the structural analysis of organic compounds.
  • 25.5K
  • 24 May 2022
Topic Review
Methanol Mitigation during Fruit-Spirits Manufacturing
Methanol is a natural ingredient with major occurrence in fruit spirits, such as apple, pear, plum or cherry spirits, but also in spirits made from coffee pulp. The compound is formed during fermentation and the following mash storage by enzymatic hydrolysis of naturally present pectins. Methanol is toxic above certain threshold levels and legal limits have been set in most jurisdictions. Therefore, the methanol content needs to be mitigated and its level must be controlled. This article will review the several factors that influence the methanol content including the pH value of the mash, the addition of various yeast and enzyme preparations, fermentation temperature, mash storage, and most importantly the raw material quality and hygiene
  • 8.8K
  • 10 May 2021
Topic Review
MOFs and COFs
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are two innovative classes of porous coordination polymers. MOFs are three-dimensional materials made up of secondary building blocks comprised of metal ions/clusters and organic ligands whereas COFs are 2D or 3D highly porous organic solids made up by light elements (i.e., H, B, C, N, O). Both MOFs and COFs, being highly conjugated scaffolds, are very promising as photoactive materials for applications in photocatalysis and artificial photosynthesis because of their tunable electronic properties, high surface area, remarkable light and thermal stability, easy and relative low-cost synthesis, and structural versatility. 
  • 5.8K
  • 08 Dec 2020
Topic Review
Ascorbic Acid-Mediated Reactions
Ascorbic acid is a vitamin found in different types of food. It has tremendous medical applications in several different fields such as in pharmaceuticals, cosmetics, and in organic synthesis. 
  • 5.6K
  • 25 Nov 2020
Topic Review
Classical Nucleation Theory
Crystal nucleation determining the formation and assembly pathway of first organic materials is the central science of various scientific disciplines such as chemical, geochemical, biological, and synthetic materials. Classical nucleation theory (CNT)  applies to systems of small organic molecules with an emphasis on the molecular interpretation of nucleation kinetics. CNT holds that density fluctuations are concomitant with the development of crystalline order. In other words, a crystal nucleus has an identical structure to its bulk crystal. 
  • 4.4K
  • 22 Jul 2022
Topic Review
Metabolic N-Dealkylation and N-Oxidation
Metabolic reactions that occur at alkylamino moieties may provide insight into the roles of these moieties when they are parts of drug molecules that act at different receptors. N-dealkylation of N,N-dialkylamino moieties has been associated with retaining, attenuation or loss of pharmacologic activities of metabolites compared to their parent drugs. Further, N-dealkylation has resulted in clinically used drugs, activation of prodrugs, change of receptor selectivity, and providing potential for developing fully-fledged drugs.
  • 4.0K
  • 13 Apr 2021
Topic Review
Beta-Carotene
β-Carotene is an organic, strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is a member of the carotenes, which are terpenoids (isoprenoids), synthesized biochemically from eight isoprene units and thus having 40 carbons. Among the carotenes, β-carotene is distinguished by having beta-rings at both ends of the molecule. β-Carotene is biosynthesized from geranylgeranyl pyrophosphate. In some Mucoralean fungi, β-Carotene is a precursor to the synthesis of trisporic acid. β-Carotene is the most common form of carotene in plants. When used as a food coloring, it has the E number E160a.:119 The structure was deduced by Karrer et al. in 1930. In nature, β-carotene is a precursor (inactive form) to vitamin A via the action of beta-carotene 15,15'-monooxygenase. Isolation of β-carotene from fruits abundant in carotenoids is commonly done using column chromatography. It can also be extracted from the beta-carotene rich algae, Dunaliella salina. The separation of β-carotene from the mixture of other carotenoids is based on the polarity of a compound. β-Carotene is a non-polar compound, so it is separated with a non-polar solvent such as hexane. Being highly conjugated, it is deeply colored, and as a hydrocarbon lacking functional groups, it is very lipophilic.
  • 4.0K
  • 16 Nov 2022
Topic Review
Synthesis of Fragrances via Cycloaddition or Formal Cycloaddition
Fragrances, short for fragrance ingredients, is a type of compounds with a sweet smell or pleasant odor that has wide applications in the fine chemical industry, especially in perfumes, cosmetics, detergents and food additives. Since the discovery of the Diels–Alder reaction, the cycloaddition of π reactants serves as one of the most powerful methods for the construction of carbocycles, which has a broad application in the fragrance industry.
  • 3.9K
  • 21 Jun 2022
Topic Review
Natural Phenols
Phenols are widespread in nature, being the major components of several plants and essential oils. Natural phenols’ anti-microbial, anti-bacterial, anti-oxidant, pharmacological and nutritional properties are, nowadays, well established. Hence, given their peculiar biological role, numerous studies are currently ongoing to overcome their limitations, as well as to enhance their activity.
  • 3.7K
  • 29 Sep 2021
Topic Review
Covalent Adaptable Networks
Thermosets are known to be very reliable polymeric materials for high-performance and light-weight applications, due to their retained dimensional stability, chemical inertia and rigidity over a broad range of temperatures. However, once fully cured, they cannot be easily reshaped or reprocessed, thus leaving still unsolved the issues of recycling and the lack of technological flexibility. Vitrimers, introduced by Leibler et al. in 2011, are a valiant step in the direction of bridging the chasm between thermoplastics and thermosets. Owing to their dynamic covalent networks, they can retain mechanical stability and solvent resistance, but can also flow on demand upon heating. More generally, the family of Covalent Adaptable Networks (CANs) is gleaming with astounding potential, thanks to the huge variety of chemistries that may enable bond exchange. Arising from this signature feature, intriguing properties such as self-healing, recyclability and weldability may expand the horizons for thermosets in terms of improved life-span, sustainability and overall enhanced functionality and versatility. In this review, we present a comprehensive overview of the most promising studies featuring CANs and vitrimers specifically, with particular regard for their industrial applications. Investigations into composites and sustainable vitrimers from epoxy-based and elastomeric networks are covered in detail.
  • 3.7K
  • 26 Oct 2020
Topic Review
Chemical looping
Chemical looping technology in general, is the rising star in chemical technologies, which is capable of low CO2 emissions with applications in the production of heat, fuels, chemicals, and electricity. This entry discusses the technology in general, gives an overview of some pilot scale plants and the different chemical looping processes with focus on the production of heat and chemicals, highlights the importance of the development of oxygen carrier materials with suitable properties, 2.11.0.0 2.11.0.0
  • 3.5K
  • 02 Nov 2020
Topic Review
Production Methods of Peptides
Peptides are organic polymers composed of 2–50 amino acids linked to each other by means of covalent amide (=peptide) bonds. The composition, length and sequence of the amino acid chain have a dramatic influence on the activity of the peptide itself, for example in the human body. Peptides are called bioactive if they have a beneficial impact on body functions, on biological processes and, as a consequence, on health. The main production methods to obtain peptides are enzymatic hydrolysis, microbial fermentation, recombinant approach and, especially, chemical synthesis. 
  • 3.4K
  • 01 Sep 2021
Topic Review
Ascorbic Acid-Induced Reactions
Ascorbic acid is the most well-known vitamin found in different types of food. It has tremendous medical applications in several different fields such as in pharmaceuticals, cosmetics, and in organic synthesis. Ascorbic acid can be used as a substrate or mediator in organic synthesis. In this review, we report ascorbic acid-catalyzed reactions in organic synthesis. Several examples are included in this review to demonstrate that ascorbic acid is a versatile catalyst for the synthesis of diverse organic compounds. Reactions catalyzed by ascorbic acid are performed in organic or aqueous media. The readily available and easy handling features of ascorbic acid make these procedures highly fascinating.
  • 3.3K
  • 25 Nov 2020
Topic Review
Dipole Moment
Synthesis, biological activity and structure-activity relationships of diverse compounds are described. The relationships between dipole moment and biological activities are discussed. Despite the progress of interdisciplinary science, the use of dipole moment values of organic compounds to understand their potent medicinal activities in various diseases remains unexplored.
  • 3.2K
  • 25 Nov 2020
Topic Review
Homogeneous and Heterogeneous Copper Catalyst
The applications of Copper-based nanoparticles have received great attention due to the earth-abundant, low toxicity and inexpensive. Due to these characteristics, copper nanoparticles have generated a great deal of interest especially in the field of catalysis. Traditional Ullmann-type couplings suffer from limited substrate scopes and harsh reaction conditions. The introduction of a new copper-based catalyst over the past two decades has totally changed this situation as it enables the reaction promoted in mild condition. The reaction scope has also been greatly expanded, rendering this copper-based cross-coupling attractive for both academia and industry. Transition metal-catalyzed chemical transformation of organic electrophiles and organometallic reagents belong to the most important cross-coupling reaction in organic synthesis. The biaryl ether division is not only popular in natural products and synthetic pharmaceuticals but also widely found in many pesticides, polymers, and ligands. Copper catalyst has received great attention owing to the low toxicity and low cost. The introduction of homogeneous copper catalysts with the presence of bidentate ligands and also heterogeneous copper catalyst over the past two decades has totally changed this situation as these ligands enable the reaction promoted in mild condition. The reaction scope has also been greatly expanded, rendering this copper-based cross-coupling attractive for both academia and industry. This review had been summarized recently advance homogeneous and heterogeneous copper catalyst in Ullmann reaction and its application and natural product and pharmaceutical industry.
  • 3.2K
  • 09 Oct 2020
Topic Review
Five-Membered Heterocyclic Compounds
Heterocyclic compounds are a class of compounds of natural origin with favorable properties and hence have major pharmaceutical significance. They have an exceptional adroitness favoring their use as diverse smart biomimetics, in addition to possessing an active pharmacophore in a complex structure. This has made them an indispensable motif in the drug discovery field. Heterocyclic compounds are usually classified according to the ring size, type, and the number of heteroatoms present in the ring.
  • 3.0K
  • 16 Aug 2022
Topic Review
Milk Fat Globule Membrane (MFGM)
Milk fat globule membrane (MFGM) is an important component of milk lipids that showed several biological properties (such as anticarcinogenic, antimicrobial, anti-inflammatory, and anticholesterolemic activities). In this review we analyse the latest results obtained from comparative proteomic studies regarding the variations and the similarities of MFGM proteome across species and lactation stages. Infant formula supplementation with MFGM represents an interesting opportunity to implement the bioactive properties exerted by MFGM, in order to narrow the gap between human breast milk and infant formula. 
  • 2.8K
  • 27 Sep 2020
Topic Review
Triptycene Synthesis and Derivatization
Since the discovery of triptycenes, great progress has been made regarding their synthetic methodology and the understanding of inter- and intramolecular interactions that involve triptycenes. Several new synthetic approaches have been developed in the last few years, and progress has been made in the context of sterically congested triptycenes and regioselective synthesis of various derivatives.
  • 2.8K
  • 06 Jan 2022
Topic Review
DPPH· Stable Free Radical
DPPH· is 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl stable free radical. It was discovered in 1922.
  • 2.7K
  • 24 Feb 2021
Topic Review
Principles of the Suzuki Coupling Reaction
The Suzuki coupling is a transition metal-catalyzed, cross-coupling carbon–carbon (C–C) bond forming reaction between organic boron compounds and organic halides. As an operationally simple and versatilely applicable procedure, the Suzuki coupling reaction has found immense applications in drug discovery and development in the pharmaceutical industry. 
  • 2.6K
  • 06 Jan 2023
  • Page
  • of
  • 15
ScholarVision Creations