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The balance between cell survival and cell death represents an essential part of human tissue homeostasis, while

altered apoptosis contributes to several pathologies and can affect the treatment efficacy. Impaired apoptosis is one

of the main cancer hallmarks and some types of lymphomas harbor mutations that directly affect key regulators of cell

death (such as BCL-2 family members). The development of novel techniques in the field of immunology and new

animal models has greatly accelerated our understanding of oncogenic mechanisms in MYC-associated lymphomas.

Mouse models are a powerful tool to reveal multiple genes implicated in the genesis of lymphoma and are extensively

used to clarify the molecular mechanism of lymphoma, validating the gene function. Key features of MYC-induced

apoptosis will be discussed here along with more recent studies on MYC direct and indirect interactors, including their

cooperative action in lymphomagenesis. We review our current knowledge about the role of MYC-induced apoptosis

in B-cell malignancies, discussing the transcriptional regulation network of MYC and regulatory feedback action of

miRs during MYC-driven lymphomagenesis. More importantly, the finding of new modulators of apoptosis now

enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to

positively impact human health.
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1.Role of MYC in Non-Transformed Cells

MYC is a family of transcription factors and consists of c-MYC, N-MYC, and L-MYC (in this review, MYC will refer to c-
MYC unless otherwise specified) [1]. Through its direct and indirect activity, MYC regulates the expression of several
genes involved in cell proliferation, differentiation, metabolism, cell growth, and apoptosis [2]. MYC works as a
transcription factor through heterodimerization with its transcriptional co-factor MYC-associated protein X (MAX).
MYC/MAX heterodimers bind the promoter of target genes through E-box motifs (CACGTG) to activate transcription [3].
The regulation of gene expression can involve multiple mechanisms including direct activation or inhibition of
transcriptional machinery complex [4], induction of specific microRNAs [5], recruitment of chromatin remodeling
complexes [6], mRNA stabilization and protein biogenesis [7]. The absence of MYC is not compatible with life [8] and its
loss of function in mature cells arrests survival, proliferation, and cell development [9]. Thus, MYC is essential during
both embryonic development and in adult mature cellular growth.

The expression of MYC protein is tightly regulated, at transcriptional, post-transcriptional and, post-translational level [10–

12] in normal tissue, with a half-life of ~20 min [13].

The MYC protein is organized as follow: a N-terminal transactivation domain (TAD), MYC box domains (MB0-IV), a PEST

domain (Proline, glutamic acid (E), Serine and Threonine rich), a nuclear localization sequence (NLS), and the carboxy-

terminus basic-helix-loop-helix-leucine zipper (bHLHZ). MYC protein domains participate in binding to a huge set of

partner proteins, which modulate MYC functions and contribute to regulating gene expression. Specifically, MB0-II motifs

affect the activity and stability of MYC and mediate the association of MYC with several proteins including P-TEFb, FBW7,

and PIN1. MBIII–IV motifs of MYC are pivotal for the roles of MYC in apoptosis and in its protein turnover. Another MYC

key domain is represented by the bHLHZ motif that is required for the interaction between MYC and MAX, essential for

DNA binding [14].

The MYC gene is activated by growth factors and is sensitive to nutrient availability. In vitrostudies confirmed that serum

stimulation of quiescent cells in culture induced a rapid up-regulation of MYC mRNA. Conversely, MYC expressionis

reduced by nutrient deprivation and hypoxia [10,15]. The tight regulation of MYC expression in non-transformed cells was

remarkably responsive to extracellular signals, at both transcriptional and translational levels [16]. Because MYC is one of

the most highly regulated proteins in the cell, many important regulatory mechanisms have been discovered through

studies of MYC [17].



2. MYC and Lymphomagenesis

MYC  is one of the most deregulated oncogenes in humans and is frequently overexpressed in hematological

malignancies due to aberrations. In most cases, aberrations include gene amplification or translocation, leading to MYC

overexpression and a change in protein function or protein conformation [18,19]. MYCrearrangements have a high

frequency in the aggressive B-cell lymphomas [20].In Burkitt’s lymphoma are present rearrangements in >90% of cases

[21], in diffuse large B-cell lymphoma (DLBCL) about 5–14% of cases [22] and in Plasmablastic lymphoma (PBL) about

50% of cases [23]. MYCpoint mutations in the coding regions are another type of genetic aberration (e.g., in a majority of

the Burkitt’s lymphomas). They can induce MYConcogenetic deregulation and can be resumed as follow: the residues

most frequently mutated are Thr58 and S62 in the MBI motif [24]; the F138C mutation in the MBII motif [25]; and deletion

of residues 188–199 in the MBIII motif [26].

A role for MYC in driving human cancer was first identified in Burkitt’s lymphoma, where MYC deregulation was a result of

chromosomal translocation into the immunoglobulin heavy chain locus [27]. MYCexpression is deregulated and increased

through different mechanisms in tumor cells. Several studies demonstrate unequivocally that the enhanced

MYCexpression is a common feature of tumorigenesis in both MYC-driven and non-MYC-driven tumors [28]. Recent

studies suggest that lymphomagenesis in a pre-clinical mouse model Eμ-mycis also determined by MYC-cooperative

mutations and concomitant multigenic lesions involving CDKN2a, NRAS, and KRAS, suggesting two-hit pathogenesis

[29]. Combinations of MYC with other oncogenes including RAS [30], oncogenic EBV components [31], or MYC-surface

CD19 signaling amplification loops have been shown to accelerate lymphoma development [32]. However, the suitability

of these models to mirror therapeutic responses to target treatments has not been adequately tested. Notably, MYC

promotes cell growth by stimulating the expression of the genes involved in the biogenesis of organelles such as

ribosomes and mitochondria, glucose metabolism, and/or lipid synthesis. Furthermore, MYC is a pivotal player in the

metabolic rewiring of cancer cells, the strategy that cancer cells adopt to cope with the energetic and metabolic demands

required to support tumor growth and progression. [33–35].MYC can contribute to tumorigenesis also influencing host

immune cells [36]. Of note, MYC with STAT3 transcriptionally regulates PD-L1 in ALK-negative anaplastic large cell

lymphoma (ALCL). In ALCL tumor-derived cell lines, MYC overexpression increased PD-L1 expression. Treatment with

the BET inhibitor JQ1 or a MYC-targeting siRNA decreased PD-L1 expression [37]. In a panel of mouse MYC-driven

lymphomas, tumor growth was dependent on MHC I expression that seemed to regulate innate immune surveillance

[38,39].

3. MYC Expression as a Key Factor of Apoptosis Activation

MYC can promote cell activation, growth, and proliferation while concomitantly sensitizes cells to apoptosis. Normal cells

have specific molecular sensors that enable detection of elevated MYC levels and response by triggering apoptosis.

Conversely, transformed cells often acquire the ability to resist the apoptotic effects of elevated MYC and to respond, by

increasing proliferation rates [17]. The abrogation of MYC-potentiated apoptosis is a crucial event of cellular

transformation and cancer progression [40]. MYC can be conceived as a double face transcription factor since on one

hand it supports cell proliferation and on the other apoptosis. Initially, it was considered disconcerting: a single molecule

drives different functions. Quickly, these observations were confirmed for other oncogenes, including E2F1 and E1A [41].

Of note, premalignant cells allow an enhanced sensitivity to apoptosis caused by ectopic MYC expression, which they

lose after malignant transformation [40]. Indeed, the tumor cells have acquired specific mechanisms for mitigating the

apoptotic effects that MYC imposes in their normal counterparts. What follows are examples of key observations linking

MYC to other apoptotic regulators.

4. Crosstalk between MYC and Cellular Regulators of Apoptosis in
Lymphoma

It is well known that MYC contributes to oncogenic changes and cell transformation but its aberration alone maybe not

sufficient to initiate lymphomagenesis.Important advances have been made in elucidating how cells respond to MYC

activation by enhancing proliferation or by triggering apoptosis. These mechanisms are interconnected and involve two

main pathways: BCL-2 pathway, p53 pathway, or both. In the beginning, apoptosis can be regulated by three distinct

subgroups of proteins belong to the same family: BCL-2 proteins. They are clustered as follow: the pro-survival proteins

(such as BCL-2, BCL-xL, MCL-1, and BCL-w) are essential for cell survival; the BH3-only proteins (for example, BIM and

PUMA) are crucial for apoptosis initiation; finally, BAX/BAK are required for apoptosis execution [42]. MYC sensitizes pre-

cancerous cells to undergo apoptosis by altering the balance of pro- and anti-apoptotic factors (Figure 1). In the Eμ-
mycmodel of lymphomagenesis, the Cleveland laboratory showed that MYC indirectly suppresses the anti-apoptotic

proteins BCL2 and BCL-xL [43]. This is consistent with evidence showing that MYC triggers apoptosis through BAX. In

this way, MYC activity directly influences cytochrome c release from the mitochondria, and therefore the activation of

downstream effector caspases [42,44].The BCL-2gene is the first cell death regulator identified by its frequent

translocation in a well-studied subtype of lymphoma in humans, the follicular B-cell lymphoma (FL) [45]. Its oncogenic

potential was revealed when BCL-2 overexpression was shown to promote the survival (but not proliferation) of pro-B-

cells deprived of cytokines [46]. DLBCLs contain both rearrangements in BCL-2 and translocation of MYC. They are

classified as “double-hit lymphomas” (DHLs) and represent ~10% of DLBCL cases [47]. Most recent discoveries have



focused on the impact of two anti-apoptotic proteins of BCL-2 family, BCL-w and MCL-1 on MYC-driven

lymphomagenesis. The overexpression of BCL-w was observed in DLBCL and correlated with poorer clinical outcomes.

Of note, MYC can indirectly suppress BCL-w expression during lymphomagenesis, by up-regulating the miR-15 family

members. Its loss profoundly delayed MYC-mediated B-cell lymphoma development due to increased B-cell apoptosis

mediated by MYC. Loss of BCL-w sensitized B-cell to growth factor deprivation-induced B-cell apoptosis and suppressed

MYC-induced lymphomagenesis, suggesting a crucial role of BCL-w in B-cell survival and lymphoma development [48].

MCL-1 protein attends in promoting the survival of B lymphoid progenitors that undergo MYC-driven lymphomagenesis.

Loss of one MCL-1allele almost abrogated MYC-driven-lymphoma development owing to a reduction in lymphoma

initiating pre-B-cells.[49]. Moreover, MCL-1 is critical also for the development of B-cells lymphoma and its down-

expression in lymphomas can be compensated by altered levels of other cell death regulators, such as BIM and/or BCL-

xL [50].

On the other hand, p53 is one of the key molecules involved in the pathogenesis of B-cell lymphomas. Lymphomas with

co-existent MYC and p53 alterations/mutations are synergistic, resulting in more aggressive lymphomas, and patients

have a particularly poor prognosis with short median survival time [51].Previous studies demonstrated that the

deregulation of MYC up-regulates ARF, which in turn activates p53 to regulate a pool of target genes involved in apoptosis

and growth arrest [52]. ARF–MDM2–p53 pathway in MYC-induced apoptosis accelerated tumorigenesis through the loss

of these tumor suppressors in mouse models of MYC oncogenesis [53–59]. Notably, BMI-1  has been one of the first

genes initially identified as an oncogene that cooperates with MYC in the generation of mouse pre-B-cell lymphomas by

inhibiting INK4a/ARF proteins and by activating the human telomerase reverse transcriptase (h-TERT) [60].

One of the main p53 target genes is PUMA, a BH3-only pro-apoptotic protein. Previous studies observed that

puma  deletion in the Eμ-myc  mouse accelerates MYC-driven lymphomagenesis [61]. Normally, PUMA initiates

programmed cell death upon induction, triggering the cytochrome  c  release and caspase activation [62]. Conversely,

deletion of puma efficaciously preserves cells against apoptosis induced by either DNA damage or oncogene activation,

competing with the protection if p53 is deleted [61].

 

5. Transcriptional Regulation Network Involved in MYC-Driven
Lymphomagenesis

 

Many other genes are involved in the pathogenesis of lymphoma cross-talking with MYC, mainly through transcriptional

regulation (see in Table 1 and Figure 1). The first dimerization partner of MYC [63], MAX, have a role in MYC-induced

oncogenesis. It is well to remember that overexpression of MAX alone in murine lymphoid cells is non-oncogenic and

results in reduced B-cell proliferation. Noteworthy, B-cell-specific deletion of MAX has a modest effect on B-cell

development but completely abrogates Eμ-myc-driven lymphomagenesis. Moreover, a study found that MAX loss leads to

a significant reduction in MYC protein levels and down-regulation of direct transcriptional targets in premalignant Eμ-myc
cells, including regulators of MYC stability [64]. Furthermore, the transcriptional repressor and MAX interactor MNT (MAX

Network Transcriptional Repressor), competes with MYC for occupancy at E-box sequences in promoter regions [65].

Campbell and colleagues showed that MNTheterozygosity slowed MYC-driven tumorigenesis in vavP-MYC10and Eμ-
myc  mice, suggesting that MNT facilitates MYC-driven oncogenesis, although no differences in the number of

preleukaemic cells were apparent [66].Recently, Nguyen and colleagues clearer explained the phenomenon. They

showed that MNT supports B-lymphomagenesis by arresting MYC-induced apoptosis, primarily through suppressing BIM.

InEμ-myc  mice, homozygous mnt  deletion decreased lymphoma incidence by enhancing apoptosis and reducing

premalignant B-cells [67]. Other transcriptional regulators have been described to antagonize or cooperate with proto-

oncoprotein MYC. For example, a tumor suppressor PRDM11 has been shown to interact in vivo with MYC during

lymphomagenesis. Loss of Prdm11accelerates MYC-driven lymphomagenesis, regulating target genes in DLBCL cells

such as FOSandJUN.Furthermore, patients with PRDM11-deficient DLBCLs have poorer survival [68]. A well-known

transcription factor family, FOXO (Forkhead Box O) can also promote lymphomagenesis. Taking advantage of vavP-
MYC10and Eμ-myc  mice, loss of FoxO3 variant induced significant acceleration of tumorigenesis. Loss of FoxO3

increased myeloid cells on the blood, spleen and, bone marrow of Eμ-myc  mice, as in MYC10mice.In vitro assays

demonstrated that loss of FoxO3 had no impact on the cycling of preneoplastic and neoplastic Eμ-myc pre-B-cells, as well

as, the selective pressure for mutation of the p53 pathway during lymphomagenesis was not altered [69]. Recent studies

focused on FOXO1 protein [70], the highest FOXO protein expressed in lymphoid cells [71]. It was shown the abundant

nuclear localization of FOXO1 in Burkitt’s lymphoma (BL). Using genome editing in human and mouse MYC-driven

lymphoma, the study demonstrates its pro-proliferative and anti-apoptotic activity in BL and identify its nuclear localization

as an oncogenic event in germinal center B-cell derived lymphomagenesis [70]. In B-cell lymphomas, MYCgene can be

inserted in various positions of the IgH locus. Once translocated and having lost its normal control, MYC is constitutively

expressed throughout the cell cycle in B-cells. Two major IgH transcriptional enhancers have been reported so far to be

linked with the oncogene MYC as the cause of B-cell malignancies. The Eμ enhancer controls early events in B-cell

maturation such as VDJ recombination [72,73] while the 3′ regulatory region (3′RR) controls late events in B-cell

maturation such as IgH transcription [74], somatic hypermutation [75], and class switch recombination [76,77]. More



recent reports have demonstrated that there are IgH intrachromosomal interactions between these 2 potent cis-acting

enhancer elements that contribute to MYC deregulation. By transgenic and knock-in animal models that bring the

oncogene myc  under Eμ/3′RR transcriptional control, it was shown the essential contribution of both Eμ and 3′RR in B-

cell lymphomagenesis. Of note, transgenic mice had a high rate of lymphoma emergence, increased proliferation, and the

highest transcriptomic similarities to human BL [78].

Sabò et al analyzed the genomic distribution of MYC during B-cell lymphomagenesis in the Eμ-myc transgenic mice and

generated ChIP-seq profiles. Among other genes, they observed that MYC associated with regulatory elements of the

Ibtk gene. Intriguingly, MYC binding intensity of Ibtkpromoter increased during lymphoma progression [79]. Ibtkis a gene

coding for a protein belonging to the Cul3-dependent ubiquitin ligase (CRL3 ) complex [80,81] and, it has been shown

to act mainly by counteracting B-cells apoptosis during B-tumorigenesis [82], especially during MYC-driven

lymphomagenesis [83]. Of note, loss of Ibtk delays the tumor onset and improves animal survival, by reducing the number

of pre-cancerous B-cells of bone marrow and spleen. It is due principally to impaired viability and increased apoptosis of

pre-cancerous B-cells. Consequently, it was observed the altered expression of proteins leading to apoptotic pathways

dependent on MYC overexpression in pre-cancerous Eμ-mycmice, such as p53 and MCL-1 protein. Furthermore, a recent

report on Ibtk shows that its haploinsufficiency also alters tumor microenvironment by enhancing MYC-driven

vascularization in B-cell lymphomas [33].

Recent papers show that lncRNAs are pivotal in MYC-driven B-lymphoproliferative disorders. An example is lncRNA

NEAT1 (Nuclear Paraspeckle Assembly Transcript 1). The aberrant expression of lncRNA NEAT1 is a common feature of

DLBCL [84] and chronic myeloid leukemia (CML) [85]. In the latter, it was shown that MYC can bind and suppress NEAT1

expression, enhancing the imatinib-induced apoptosis [85]. MYC regulates cell proliferation of DLBCL via the NEAT1-miR-

34b-5p-GLI1 signaling axis modulating DLBCL progression. A direct bound to the NEAT1 promoter allows MYC to regulate

the NEAT1 level. In particular, knockdown of NEAT1 constrained cell proliferation and facilitated apoptosis of DLBCL cells

through the miR-34b-5p-GLI1 pathway [86].

Figure 1. Regulatory networks involved in lymphomagenesis.Schematic representation of the molecular mechanism

through which the initiating cancer B-cells escape from apoptosis. The interactors that are up- (arrow in green) and down-

regulated (arrow in red) directly or indirectly by MYC are shown.

 

Table 1. Interactors involved in the transcriptional regulation of B-cell lymphomagenesis.

Interactor
Lymphoma Subtypes and
Mouse Models

Targets of
Interaction

Impact on
Lymphomagenesis

References

lncRNA NEAT1 DLBCL, CML
miR-34b-5p-GLI1

pathway
Reduction  [84,85]

PRDM11 DLBCL FOS and JUN Reduction [68]

MNT vavP-MYC10 and Eμ-myc mice BIM Acceleration [2,66]

FOXO3/FOXO1
vavP-MYC10 and Eμ-myc mice

BL
  Reduction [69,70]

IBTK



MAX Eμ-myc mice   Reduction [64]

IBTK
Eμ-myc mice

 
MCL-1 and p53 Acceleration [67]

Emu and 3′RR

c-myc-KIEmu, c-myc-KICmu, and

c-myc-KICa lpha mice

BL-like lymphomas

  Cooperate to induce [78]

lncRNA: long non coding RNA; NEAT1: Nuclear Paraspeckle Assembly Transcript 1; PRDM11: PR/SET Domain 11;

DLBCL: diffuse large B-cell lymphoma; CML: chronic myeloid lymphoma; GLI1: GLI Family Zinc Finger 1; MNT: MAX

Network Transcriptional Repressor; FOXO3/FOX1: Forkhead Box O3/Forkhead Box O1; BL: Burkitt lymphoma; MAX:

MYC Associated Factor X; IBTK: Inhibitor of Bruton Tyrosine Kinase.

6. Regulatory Feedback Action of miRs During MYC-Driven
Lymphomagenesis

Additionally, key microRNAs (miRs) (such as miR-34a and miR17-92) are related to MYC activation and play a vital role in

some B-cell lymphomas [51]. The relevance of MYC-miRs circuits in B-cell functions is a novel insight into

lymphomagenesis. MiRs interact with MYC acting as regulatory feedback that can influence the pre- or post-

transcriptional expression of multiple genes, as shown in Table 2 and Figure 1. MiR-34a is reported to have tumor-

suppressive activity in the oncogenesis of lymphoma and progression, contributing to p53-dependent apoptosis [87,88]. In

DLBCL cells MYC mediated the repression of miR-34a resulting in a high proliferation of B-cell lymphoma by

dysregulation of its target FOXP1 [89]. miR-34a and let7a are also targets of MYC repression establishing a feedback

loop that aggravates and perpetuates the effects of MYC overexpression and may thus contribute to cancer progression

[90]. MYC can indirectly repress several miRs by the recruitment of histone deacetylase (HDAC). It is known that the

expression of miR-15a/miR-16-1 promotes apoptosis of cancer cells and suppresses tumorigenicity. The miR-15a/16-1

cluster directly down-regulates the anti-apoptotic protein BCL-2, MCL-1, CCND1, and WNT3A [91] and leads to induction

of G0G1 arrest in tumor cells by suppressing cell cycle-positive regulators including CDK6 (Cyclin Dependent Kinase 6),

Cyclins D and E [92]. Through epigenetic regulation and recruiting histone deacetylase 3 (HDAC3), MYC represses miR-

15a/miR-16-1 expression in mantle cell and other non-Hodgkin B-cell lymphomas [93]. Indeed, MYC and EZH2 act in

concert to silence tumor suppressor miRs in aggressive lymphoma cells. Of note, MYC recruited EZH2 to miR-26a

promoter repressing miR-26a expression in aggressive lymphoma cell lines as well as primary lymphoma cells [94].

Concomitantly inhibitory action of both EZH2 and HDAC3 promoted transcriptional and epigenetic MYC-mediated

repression of miR-29, resulting in down-regulation of miR-29 target pro-apoptotic genes and lymphoma growth

suppression in vitro and in vivo[95]. MYC can work not only indirectly on the regulation of miRs but also as direct activator.

The best example is the case of the oncogenic miR17-92 cluster. The miR17-92 polycistron at 13q31.3 is commonly

amplified in several subtypes of aggressive lymphomas, including diffuse large B-cell lymphoma (DLBCL), mantle cell

lymphoma (MCL), BL [96,97]. Several oncogenic transcription factors (TFs) regulate the expression of miR-17-92 cluster

thus influencing its oncogenic activity. MYC was the first identified transcription regulator of miR-17-92 by directly binding

to its genomic locus. The first model of MYC-miR-17-92 interaction was demonstrated in Eμ-miR-17~92transgenic mice,

where the overexpression of miR-17-19b promotes the oncogenesis of MYC expressing B-cell [98]. MYC may suppress

the expression of the pro-apoptotic BIMgene, a target of miR-17-92 thus explaining its tumor-promoting function, so

contributing to maintaining survival and self-renewal [5]. Furthermore, the induction of the miR-17-92 cluster by MYC

attenuates E2F1 protein expression, such that interruption of this regulatory loop results in DNA replication stress thus

promoting lymphomagenesis [99]. The high miR-17-92 expression has been found in BL, confirming that the activation of

the MYC/miR-17-92 axis is a general feature of this disease [100]. Of note, the typical translocation of MYC into the

immunoglobulin heavy chain locus is observed in about 80% of BLs [101] and this overexpression can induce higher miR-

17-92 levels. Further studies are needed to investigate the role of miR-17-92 in DLBCL, where the pro-apoptotic PTEN

tumor suppressor gene could be involved as miR-19a target [102]. As it is also a direct MYC target, MYC-induced miR

may coordinate the balance of cell proliferation and cell death in these lymphomas. On the other hand, previous studies

have suggested PTEN as an indirect regulator of MYC activity through activation of the PI3K-AKT-GSK3β pathway. Down-

regulation of the PTEN protein may represent yet a pathway of post-transcriptional MYC activation [103].

Furthermore, MYC acts as a negative regulator of miR-144/451expression by directly binding to its promoter region and,

on its turn, is negatively regulated by miR-451. The expression of miR-144/451is commonly down-regulated in B-

lymphomas, and therefore, the axis MYC -miR-144/451generates a positive feedback loop which sustains the persistently

elevated high MYC levels, in B-lymphocytes. By using a mouse model knocked out for miR-144/451gene (miR-144/451
), it has been shown that the loss of miR-144/451is important to initiate and promote B-lymphomagenesis through the

subsequent activation of MYC [104]. Collectively, these observations highlight the broad impact of MYC-mediated miRNA

reprogramming on cellular survival and proliferation pathways, through controlling apoptosis.

−/
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Table 2. Major miRNAs involved in MYC-driven B-cell lymphomagenesis.

miRs Functions
MYC
Interactors

MYC
Regulation

Lymphoma
Subtypes

References

miR-34a
Tumor suppressor by promoting

p53-dependent apoptosis
FOXP1

Negative

regulation

DLBCL,FL,GC-

DLBCL
[87,88,90]

miR-15a/16-
1

cluster

Tumor suppressor by targeting

BCL2, Mcl-1, Cyclin D1 (miR-15a

and miR 16-1);

Tumor suppressor by inhibiting

cell cycle-positive regulators

including CDK6, Cyclins D and E

(miR-16)

HDAC3
Negative

regulation
MCL [91-93]

miR-26a
Tumor suppressor by promoting

apoptosis
EZH2

Negative

regulation
BL [94]

miR-29
Tumor suppressor by targeting

CDK6, Mcl-1, IGF-1R

HDAC3,

EZH2

Negative

regulation

MCL, GC-DLBCL,

DLBCL, BL
[95]

miR-17-92
cluster

OncomiR by repressing the

expression of BIM

OncomiR by repressing the

expression of PTEN (miR-19);

OncomiR by down-regulating

E2F1 (miR 17-20a)

 
Positive

regulation

DLBCL, MCL, BL,

GC-DLBCL
[96-103]

miR144/451
Positive feedback loop to

safeguard the high level of MYC
 

Negative

regulation
AML [104]

miR: microRNA; DLBCL: diffuse large B-cell lymphoma; FL: follicular lymphoma; GC-DLBCL: germinal center-diffuse large

B-cell lymphoma; FOXP1: Fork head Box P1; BCL2: B-cell lymphoma 2; Mcl-1: MyeloidCellLeukemia1; MCL: mantle cell

lymphoma; HDAC3: histone deacetylase 3; BL: Burkitt lymphoma; EZH2: Enhancer of zeste homolog 2; CDK6: Cyclin
Dependent Kinase 6; IGF-1R: Insulin-like growth factor1 receptor; PTEN: Phosphatase and tensin homolog; AML: Acute

Myeloid Leukemia.

7. Conclusion and Remarks

Compromised apoptotic signaling promote tumorigenesis, particularly together with oncogenic lesions that drive excess

cell proliferation [105–106]. MYCgene alterations have been identified in B-cell neoplasms, and are usually associated

with aggressive clinical behavior. Development of novel techniques in the field of immunology and new animal models

have greatly accelerated our understanding of oncogenic mechanisms in these MYC-associated lymphomas. Mouse

models are a powerful tool to reveal multiple genes implicated in the genesis of lymphoma and are extensively used to

clarify the molecular mechanism of lymphoma, validating the gene function. MYC is a transcription factor that regulates

several relevant biological cellular events. Here, we have highlighted the transcriptional regulation network of MYC during

lymphomagenesis, the molecular mechanisms of MYC collaborations that lead to escape from apoptosis, and the circuits

between MYC and miRs involved in the pathogenesis of B-cell lymphomas harboring MYC alterations. Moreover, from the

examples discussed above, the scientific evidence is increasing on novel interactors of MYC. These cooperations are at

the head of a cascade that ultimately triggers apoptosis pathways. The dynamic interactions between anti- and pro-

apoptotic proteins and their regulation by oncogene MYC depicted in Figure 1, have uncovered novel opportunities for

therapeutic intervention. Therefore, new agents designed to specifically target MYC and its interactors will need to be

improved. MYC-driven pathways are extremely intricate, involving a huge number of interactors, and affecting several

cellular processes such as cell survival, proliferation, differentiation, and apoptosis, sometimes conflicting with each other.

A deeper understanding of the molecular mechanisms of MYC roles and its interactors in each B-cell lymphoma

type provides a wide set of candidates for the development of a better personalized targeted therapy that in near future

could lead to successful treatments with less toxicity.
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