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Cancer is a major health problem. Most of the treatments exhibit systemic toxicity, as they are not targeted or specific to

cancerous cells and tumors. Specific and targeted therapy can be designed using specific functional modifiers/inhibitors

like antibodies, peptides, nanobodies and soluble ligands etc. Another novel therapeutic strategy is by using Oncolytic

viruses. These are viruses, which can specifically infect or enter into cancer cells and kill them. Since viruses have

evolved natural affinity towards some receptors, their affinity needs to be re-targeted towards cancer cells and de-targeted

from their natural receptors. Adenoviruses are very promising gene delivery vectors and have shown immense potential in

delivering targeted therapy. Here, we review a wide range of strategies that have been tried, tested, and demonstrated to

enhance the specificity of oncolytic viruses towards specific cancer cells. A combination of these strategies and other

conventional therapies may be more effective than any of those strategies alone.
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1. Introduction

Cancer is a major health problem, posing a significant burden to individual patients and to society  (https://gco.iarc.fr/).

Large efforts have been made to understand its causes and mechanisms of disease progression. Although several

advanced therapeutic options based on them are now available, only a few cancer types can be treated effectively if

curative surgical resection is not possible . In the vast majority of cases, improving the quality of life of patients even

slightly is a practical and significant goal to achieve. Among the available treatments, most of them unfortunately lack

cancer specificity, leading to a range of systemic adverse effects that diminish a patient’s quality of life, which is still a big

issue . To improve patient outcomes, researchers have been focused on the development of more cancer-specific,

targeted therapies .

In general, current strategies of drug development aim to modify the function of a target protein in order to slow down

tumor growth or possibly decrease tumor volume. This strategy requires targets to be differentially expressed in tumors,

and also functionally important for tumorigenesis and progression . Numerous high-throughput genomic and

proteomic studies comparing healthy and cancerous cells have identified many such potential drug targets . These

putative targets are then subjected to high-throughput screening with libraries of potential drug candidates, such as

peptides, antibodies, natural compounds, chemicals, and aptamers . Selected molecules that

specifically bind to the target are considered for further functional validation . Unfortunately, many potentially druggable

genes were found to be difficult to target by this method. Most of these screening experiments showed that despite

specific binding of small molecules to tumor targets, the inhibitory or modifying effects of a large fraction of molecules

were insufficient to alter their functions and may also exhibit significant toxicity . Without strong inhibitory or

modifying effects, these molecules cannot be developed for therapy under conventionally with methods . Such

issues have led to a lack of successful drug candidates [.

In such situations, tumor targeting by viruses provides an excellent alternative. The natural ability of viruses to interact

with cell surface proteins to gain entry into cells makes them attractive tools for targeted therapy . If a virus can be

engineered to interact with specific proteins or receptors in a cancerous cell, it can enter the cell to deliver therapeutic

cargo or kill the cell by infection inducing cytolysis . A major advantage of viruses over small molecules is that the

target protein need not be functionally important to the tumor biology. Instead, it must only be specifically expressed or

significantly overexpressed in a target cell . Therefore, any gene unique to tumors, irrespective of its functional

importance, can be subject to targeting. This dissociation of gene expression from functional relevance eliminates a major

limitation, bringing hundreds of genes previously deemed undruggable back into the pool of potential therapeutic targets.

This significantly improves the chances of identifying and developing new targeted therapies.
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Many viruses cause lysis of infected cells at the end of their infection cycle. Among them, the viruses which are designed

to kill cancerous cells are called oncolytic viruses (OVs) . Many different viruses have been exploited for this

purpose, most notably adenoviruses (AdV) , vesicular stomatitis virus (VSV) , herpes simplex virus (HSV) ,

vaccinia virus , reovirus , and Seneca valley virus . Depending on the type of cancer, method of targeting,

and therapeutic cargo to be delivered, some viruses may be more suitable than others. Here, we will focus on using

adenoviruses as oncolytic viruses and discuss various strategies that have been employed and demonstrated to be

effective in achieving a more specific targeting of cancer cells.

2. Adenoviruses as Vectors for Gene Therapy and Oncolytic Viruses

Adenoviruses are popular gene delivery vectors . They can effectively infect both dividing and non-dividing cells .

Their double-stranded DNA genome remains episomal, rarely integrating into the host genome . Additionally, while

adenoviruses are very common pathogens to humans, they usually cause only mild symptoms in the upper airway, liver,

urinary tract, tonsils, enteric, renal, and ocular tissues .

Adenoviruses are a family of icosahedral, non-enveloped viruses. Based on serology and genomic sequences, AdVs have

been grouped into seven species, each including several types/subtypes . Their capsid is comprised of four structural

proteins (hexon, penton, fiber, and pIX), each of which contributes to interaction with the host cell surface. Depending on

the type of virus, they can bind to various cell surface proteins to facilitate entry into target cells . The knob region

of fiber can bind to Coxsackievirus and adenovirus receptor (CAR), Vascular cell adhesion molecule-1 (VCAM), CD80,

CD86, MHC1, and Scavenger receptors (SRs) . The shaft of fiber can bind to heparan sulphate proteoglycans

(HSPGs)  and RGD (Arginine(R)-Glycine(G)-Aspartate(D)) motif in the penton can bind to integrins, CD46, and sialic

acid (SA) . In some cases, adenoviral protein interactions can be indirect, mediated by a bridging molecule. Hexon can

bind to coagulation factor X (FX) , which in turn helps in binding to HSPG. Different serotypes show wide ranges of

affinities for these binding partners. There is some discrepancy in determining the most important receptor in a particular

cell type, however in most cases several receptors play significant roles. Understanding interactions and affinities

between viral proteins and host receptors has helped in designing improved strategies of virus detargeting (abolishing

virus affinity towards natural targets) and retargeting (generating affinity towards newer proteins or domains).

AdVs are popular as gene therapy vectors and are the subject of over 100 clinical trials . Among them, Ad2 and Ad5

are the most widely used and widely studied for gene therapy. However, there are some limitations to their use. (1) A

significant number of people possess antibodies against common adenoviruses, making it difficult for conventional AdVs

to be used for systemic injection. However, in recent years, this thought process has changed and immune response has

been somewhat exploited to favor AdV-mediated therapy . (2) AdVs are quickly sequestered to organs such as the liver

and lungs after systemic injection. Residential macrophages (e.g., Kupffer cells) play an important role in this process. In

one extreme case, high-dose intravascular injection induced a fatal cytokine storm . Erythrocytes and platelets also

contribute to sequestration of viral particles upon intravenous delivery . In spite of these limitations, an increasing

understanding of adenovirus biology has led to designing novel strategies to overcome such limitations, and significant

progress has been made.

Detargeting AdVs away from their natural interactions and retargeting of AdVs towards a specific target in an intended cell

are very crucial processes in developing a targeted therapy for cancer. Here, we will discuss various strategies employed

to achieve detargeting, retargeting, and delivery of novel therapeutic molecules with a few selected examples.

3. Strategies for Specific Targeting of AdV

Broadly speaking, detargeting and specific retargeting can be achieved in multiple ways: (2.1) by selective binding or

retargeting towards proteins uniquely expressed or overexpressed on the surface of specific cells; (2.2) by selective

expression of effectors (inhibitors or enhancers) in specific cells; (2.3) by inducing conditional or selective replication of

viruses in specific cells; (2.4) by combining these methods.

3.1. Selective Retargeting Towards Proteins Uniquely Expressed or Overexpressed on the Surface of
Specific Cells

Based on structural and functional studies, we have a decent understanding of how viral proteins interact with host

receptors. By altering the sequences of key interacting amino acid residues and domains, their affinity towards natural

receptors can be abolished (Section 2.1.1, detargeting) and redirected towards a new protein (Section 2.1.3, retargeting).

Since it is difficult to predict how sequence changes may alter the affinity towards an intended target, retargeting towards
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a specific target is a very challenging process. High-throughput screening to look for such sequences may be the best

way (Section 2.1.2, infectivity selective screening for specific targeting) to find retargeting sequences and molecules .

Most structural proteins, including hexon, pIX, fiber, and penton, have been exploited by these approaches.

3.1.1 Detargeting of AdV Structural Proteins

Detargeting of Hexon and pIX

Hexon is the most abundant (240 trimers) structural protein in the AdV capsid and is also the main cause of AdV

sequestration to the liver . Hexon binds to factor-X (FX), a soluble coagulation factor found in blood plasma,

facilitating viral entry into Kupffer cells via scavenger receptors (SR) . Abolishing this interaction will greatly reduce

sequestration, allowing circulating AdV to be distributed to other tissues. This can be accomplished by several

mechanisms, including by introducing mutations into the hyper variable region (HVR5) of hexon , inserting

heterologous sequences, swapping the whole HVR , and by using drugs (such as warfarin and snake venom

protein, factor X-binding protein (X-Bp) .

Some naturally occurring amino acid sequences (peptides) with known binding characteristics have been used for

detargeting and retargeting. A well-known example is the RGD motif found in penton in AdVs . This peptide is known

to interact with integrins that have been slightly modified into RGD-4C and incorporated into HVRs of hexon and the HI-

loop of fiber . In combination with other modifications, this could efficiently detarget fiber from CAR and

increase its affinity towards integrin enriched cells. Some studies have shown promising results and progression through

clinical trials . However, we think looking for naturally occurring motifs and incorporating them into AdV

structural proteins to see if they retain their affinity and specificity offers limited options for newly discovered targets of

interest.

Another strategy utilizes information from peptide-based screenings that have been performed over the past few decades

on key cancer-related drug targets. Such screenings are mostly done by using phage display and/or chemically

synthesized libraries. Several potential candidates that specifically bind to individual drug targets have been identified.

These peptides, irrespective of their function, can be incorporated into hexon to retarget oncolytic adenoviruses (OAdV). A

few successful examples have been described . Ghosh et al. introduced two such peptides into the HVR5 region of

hexon to detarget it away from FX and retarget it towards skeletal muscle cells, which otherwise are not susceptible to

AdV binding . It seems that small peptides may be a better choice than larger protein domains, as they may not

affect the structural integrity and assembly of the virus .

In comparison, altering sequences of hexons seems to be a much safer option than pIX, keeping the structural integrity of

capsids in mind. Since hexons and pIX exist in high copy numbers within the virus capsid, a slight increase in their affinity

towards an intended target may lead to a stronger cumulative effect on binding .

Detargeting of Fiber

Fiber is another major AdV structural protein that interacts with host receptors. Fiber consists of two components: (1) the

shaft, projecting outward from each apex of the capsid structure; and (2) the knob, located at the distal end of the shaft.

The knob structure is stabilized by multiple loops. Structural and mutagenesis studies have shown that the AB-loop of

fiber is critical for interaction with CAR, while the c-terminal domain and HI-loop were not involved . Therefore, the HI-

loop and C-terminal domain can be manipulated without affecting the fiber’s ability to interact with CAR. Since they are

positioned towards the terminus, additional amino acids introduced in these domains may remain out of the core structure

of knob, and therefore may not affect its structural stability.

As with hexons, peptides selected by high-throughput screening methods, as mentioned before, have been introduced

into the HI-loop or C-terminus to detarget and retarget fiber in AdVs . A large number of successfully retargeted

AdVs towards neuronal cells, brain endothelial cells, vascular endothelial cells, prostate cancer, lung cancer, pancreatic

cancer, muscle cells, and receptors-like epidermal growth factor receptor (EGFR) have been reported 

. Similar to hexon-based studies, keeping the structural stability in mind, small peptides are widely

used. However, proteins as large as 83 amino acids have been introduced into this domain, but the viral packaging was

somewhat affected . Therefore, smaller proteins and peptides seem to be the better options.

Simply modifying the HI-loop or c-terminus while keeping the AB-loop intact may not fully abolish fiber–CAR interactions,

which is another major reason behind sequestration of AdVs. Hence, complete abolition of fiber–CAR interaction by

modifying the AB-loop would be more beneficial. Miura et al. showed improvements in many screening experiments after

modifying the AB-loop region . Sato et al. used AB-loop-modified AdV libraries to screen for candidates that specifically
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bind to CD133. They demonstrated that a peptide sequence “TYMLSRN” introduced into the AB-loop efficiently retargeted

the AdV towards CD133 and away from CAR . Similarly, the “VTINRSA” peptide could retarget AdVs to mesothelin .

RGD motif and its derivatives were used to modify the fiber, and many such modified viruses are undergoing clinical trials.

As mentioned above, identifying an appropriate retargeting sequence to replace wild-type sequences is very challenging.

A novel alternative to replacing native sequences with retargeting sequences was demonstrated by introducing a

“universal acceptor domain” into structural proteins. A bridging molecule can then be used to facilitate the interaction

between the virus and its target. The Fc region binding domain of Staphylococcus aureus protein A, biotin acceptor

protein (BAP), and a FLAG  peptide have been used as universal acceptor domains .

These “universal acceptor domains” are usually large proteins, and their incorporation into structural proteins may affect

viral stability. Since the viral fiber protrudes outside the core capsid, we think it is a more suitable location for insertion of

large protein domains than hexons which form the core of the capsid.

Swapping of fibers is also an option to change the affinity and evade immune response, at least temporarily 

. The swapping of fibers and chimeric fibers has been very promising in early experiments and clinical trials,

especially Ad5/3, Ad5/11, Ad5/9, and Ad5/35 , Since these fibers (Ad3 and Ad35 fibers) do not bind to

CAR, detargeting from CAR becomes an inherent property. However, this may drive their affinity towards desmoglein,

CD46, and other native receptors, leading to a different type of off-target effects. This can be overcome by combining this

(swapping) with other strategies, such as adding a targeting peptide, to achieve effective detargeting and retargeting .

3.1.2. Infectivity Selective Screening for Specific Targeting: Strategies and Importance

A typical novel drug discovery approach against a specific target mainly relies on screening of a large collection of small

molecules and potential drug candidates. Several peptides, antibodies, single-chain fragment variables (ScFVs),

nanobodies, and aptamers have been identified by high-throughput screening studies for their ability to bind specifically to

a target . Usually, such screenings are done in bacterial systems or in chemical mediums. One of the major concerns

is that, the candidates selected under such alien environmental conditions may not retain their properties in eukaryotic

cells or animal bodies, where they are ultimately intended to function. Further, they may not remain equally functional and

effective when introduced into AdV structural proteins. In most cases, incorporation of such pre-identified motifs into AdV

structural proteins affects the viral assembly due to structural deformation. Hence, vast majority of these candidates could

not be used for retargeting of AdV .

Therefore, if possible, it is more logical to avoid traditional bacterial or chemical screening methods. It could be better to

directly generate a large-scale AdV library with huge sequence diversity at the desired loci (Figure 1a–c), and screen them

for their ability to interact with a specific target (Figure 1d), instead of using a phage-based system in bacteria. Such AdV-

based peptide display libraries can be created in the loops (like AB-loop, HI-loop) of fiber, c-terminal domains of fibers,

HVRs of hexon and in pIX. We believe that AB-loop-based libraries are more suitable, as sequence manipulation in this

region has a lower chance of affecting capsid assembly and can also abolish interactions between the wild-type AB-loop

and CAR. This will consolidate both detargeting and retargeting within one library.
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Generating libraries of eukaryotic viruses such as adenoviruses is a more complicated process than phage-based libraries

or just plasmid-based libraries. Phage libraries are relatively easier to produce as they require only bacteria, which are

more efficient than eukaryotic cells for DNA manipulation and transformation . The difference in efficiency is huge and

varies by several magnitudes. Hence, unfortunately, researchers had to choose between screening of a large number of

candidates under alien conditions versus a limited number of candidates under native conditions . Obviously, a library

of a large number of candidates that can be screened under native conditions will be an ideal solution.

Several methods have been published, which describe the generation of large libraries, especially of phages and

plasmids. Some reports have claimed to achieve libraries with a staggering diversity of over 40 billion unique candidates

. However, estimation of diversity in this report was based on statistical extrapolation of fewer than 100 sequences,

rather than high-throughput next-generation sequencing (NGS) based methods . Surprisingly, there are several other

reports that have used NGS to sequence millions of candidates to more accurately determine the diversity of their libraries

. They unambiguously found that such high diversity (40 billion as claimed by others) did not exist in their libraries and

it would be very difficult to achieve, even by scaling up their efforts. Very interestingly, in most of the published literature,

we found that studies that claim huge diversity have not validated their claims with NGS, while those who used NGS

never claim such large numbers. This correlation is revealing and it would be instructive to see the groups claiming huge

diversity (billions) use NGS-based methods to validate their libraries and determine the actual diversity. Such studies are

still awaited.

Our group has designed a novel approach for generating a library of AdVs with high sequence diversity in the AB-loop

regions of fibers . Screenings using this library has led to the identification of two successful candidates against

mesothelin and CD133 . Further, we have developed novel methods to generate an ultra-high sequence diversity library in

the AB-loop region of fiber. The diversity has been validated to contain more than 100 million candidates by using

stringent NGS-based methods . This is, by far the largest, validated library (among plasmid, peptide, antibody, phage

or recombinant virus based libraries) to our knowledge. Such a library with largest reported diversity which enables

screening under native conditions will be very useful tool for screening for novel specificity determinants.

3.1.3 Retargeting of AdV by Affinity Modifiers

Protein- and Peptide-Based Bridging Molecules

High-throughput screening of libraries and validation of selected candidates can be very resource intensive. Conceptually,

a simpler way to overcome this, is by using “affinity modifiers” or bridging molecules. Typically, these are capable of

binding to a viral particle on one end and to a potential target on the other end. Modifiers can be of a combination of a

variety of specificity determinants, including peptide-based linkers, bispecific antibodies, diabodies, triabodies, antibody–

ligand complexes, receptor–ligand complexes, and high-affinity binders to virus–ligand complexes.

The main purpose of these modifiers is to bring the virus in close proximity of an intended target cell and facilitate

interaction. A few successful demonstrations are listed in Table 1 .

Table 1. Detargeting and retargeting strategies with representative studies.

Strategy Examples References

a. Selective Detargeting And Retargeting Towards Specific Receptors/Cells.

Detargeting of AdV structural proteins

Detargeting in Hexon    

Insertion of lysine in

hexon
Liver detargeting [60]

Insertion of targeting

peptides
Skeletal muscle cells, liver detargeting [64,65,76–79]
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Insertion of large

universal acceptor

proteins (BAP)

Liver detargeting [80]

HVR swap Liver detargeting, breast cancer, immune evasion [57,59,61]

Drugs (warfarin, Snake

venom protein X-Bp)
Liver detargeting [62,63]

Hexon and pIX Liver detargeting, HCC, ovarian carcinoma, melanoma [81–83]

Detargeting of Fiber    

Modified HI-loop

Modified AB-loop

Insertion of proteins or

universal acceptors

neuronal cells, brain endothelial cells, vascular endothelial cells,

prostate cancer, lung cancer, pancreatic cancer, muscle cells,

colorectal cancer

[66,67,85–97]

[55,100]

[87,88,98,99,101–

114]

Infectivity Selective Screening for Specific Targeting: Strategies and Importance

Phage display and other

screening: Insertion of

selected peptides into

AdV proteins

Liver detargeting, neuronal cells, brain endothelial cells, vascular

endothelial cells, prostate cancer, lung cancer, pancreatic cancer,

muscle cells, colorectal cancer

[79,121]

Adenovirus-library-based

screening: Direct

modification of AdV

libraries.

Liver detargeting, pancreatic cancer, colorectal cancer. [55,100]

Retargeting of AdV by Affinity Modifiers

Antibody–antibody-based

bridging molecules

Anti-AdV protein conjugated to VEGFR, TIE-2, integrins, EPCAM,

EGFR, HER2, Endoglin, HMWMAA
[127–132]

Antibody–ligand-based

bridging molecules
anti-AdV protein conjugated to Folate, TNFa, IGF1, EGF [133,134]

Peptide–antibody-based

bridging molecules
p75 neurotropin receptor on hepatic stellate cells [135]

Soluble receptors

conjugated to ligands

(sCAR, FX)

EGF, anti-Cd40 ScFv, ApoE ligand, anti-ErbB2, anti-CEA, Polysialyc-

acid (PSA), CXCL12
[136–145]

BiTE, Leucine-zipper-

based linkers

CD44v6, anti-B-cell maturation antigen, FR-α, EGFR, EpCAM,

carcinoembryonic antigen, CD40
[147–154]

b. Selective Expression of Effectors (Inhibitors/Enhancers) in Specific Cells.



Protein-based effectors Interferons, GM-CSF, IL12, CD40L, CTLA4 [156–168,170]

Nucleic-acid-based

effectors.

Liver detargeting, miR122, miR145, miR148, miR21, let7, KRAS,

breast cancer, Hepatocellular carcinoma, colorectal cancer cells
[202–208]

c. Selective replication of virus in specific cells.

Promoter-based CRAd
Lung, prostate, ovarian, pancreatic cancer, adult T cell

Leukemia/Lymphoma, glioma, meduloblastoma, sarcomas
[69,209–222]

CRAds based on

Interaction of essential

viral genes with

Tumor-specific proteins

colon, breast, non-small cell lung, head and neck, and pancreatic

tumors, cervical carcinoma, glioblastoma, cancers with disturbed Rb

pathway

[172,223–228]

In general, due to the structural complexity of bridging molecules, their production, method of delivery, and stability pose

limitations on their application. However, a large number of studies have demonstrated their effectiveness at least in vitro

and when no other retargeting methods are available, these inconveniences may be overlooked.

Soluble Receptors Conjugated to Ligands

Curiel’s group reported a novel way of designing bridging molecules by exploiting natural receptors of AdVs. Viruses have

naturally evolved high affinity towards specific cell surface receptors. By using a soluble form of the same natural receptor,

they could block (saturate) the native viral protein, leading to effective detargeting. This was demonstrated by using a

soluble CAR (sCAR) conjugated to several ligands and ScFvs to retarget AdVs .

Hexon– Coagulation Factor (F)X (FX) binding was utilized in a similar manner by conjugating an ScFv against HER2/neu

to the FX protein . However, the in vivo efficiency of these methods has yet to be demonstrated.

Viruses, which express retargeting molecules as fused structural proteins (e.g., as nanobodies, peptides, or ScFVs fused

to viral fiber, penton, pIX, or hexon) may not allow proper folding and post-translational modifications. This may render

such retargeting molecules non-functional. This is somewhat expected, as the requirements of maturation of viral proteins

and expressed targeting molecules are very different. Hence, expressing these targeting molecules separately and

allowing them to undergo full maturation before assembling them into a functional virus–adapter complex could be more

effective. However, expressing these retargeting molecules separately and then assembling them with virus particles into

a functional complex before delivery has not been easy either. Synthetic leucine-zipper-based dimers  and

bispecific T-cell engagers (BiTEs) are examples of retargeting molecules that may need extensive maturation. Several

studies have tried to use them to increase tumor specificity, however the overall outcomes have not been significant 

.

3.2. Selective Expression of Effectors (Inhibitors or Enhancers) for Enhanced Specificity

In addition to selective targeting, selective expression of effectors under spatially and temporally regulated promoters or

regulatory elements provides another dimension to specific targeting.

Adenoviruses have been very effective gene delivery vectors, at least in vitro. They can accommodate about 3.5 kb of

additional nucleotides in their genome, which is quite reasonable and sufficient to allow insertion of most commonly used

gene expression cassettes. Many spatially and temporally regulated promoter driven expression cassettes were

engineered into the AdV genome to express essential viral genes and other heterologous genes, including therapeutic

proteins (interferons, monoclonal antibodies, cytokines, arresten, TNF-related apoptosis-inducing ligand (TRAIL) 

, and nucleic-acid-based effectors (RNAi-based

regulatory elements, clustered regularly interspaced short palindromic repeats (CRISPR) and, transcription activator-like

effector nucleases (TALENs).

3.2.1. Protein-Based Effectors
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Hemminki et al. used an OAdV to express granulocyte–macrophage colony-stimulating factor (GMCSF) under a viral E3

promoter (Ad5/3-D24-GMCSF). They were quite efficient in inducing a selective antitumor response. Hemminki et al. and

others further demonstrated its effectiveness in patients who had failed conventional chemotherapy and radiation .

Similar to GMCSF, several other receptors and cytokines such as CD40L and interferons  have also been

evaluated. Yamamoto’s group has effectively used interferon expressing OAdVs to target pancreatic cancer in mice

models and immunocompetent hamster models . OAdVs have also been developed to express a monoclonal

antibody against CTLA4. Hemminki’s group used a similar Ad5/3-D24aCTLA4 vector to express it in tumor cells and

observed selective stimulation of T-cells in patients . Most of these effectors are expressed with native adenovirus

promoters, however using them with a specific promoter (temporally and/or spatially regulated promoter) may enhance

the specificity.

3.2.2. Nucleic-Acid-Based Effectors

Nucleic-acid-based effectors have significant advantages, as they do not need to express any proteins or undergo

complicated post-translational modifications (as in the case of RNAi). Even when translation is necessary to produce

functional protein–RNA complexes, they do not need to be produced in large quantities, as most of them are multiple

turnover catalytic complexes (RNAi, CRISPRs, and TALENs) .

RNAi is an endogenous pathway of a cell or organism that defends against invasive genetic elements, such as viruses

and transposons. RNAi-mediated pathways, which execute their functions through a multitude of small RNA-mediated

pathways, including microRNAs, are key to maintaining cellular homeostasis and regulating metabolism .

Many miRNAs have been found to be involved in tumorigenesis by functioning as oncomiRs and tumor suppressors.

Hence, they can also be potential targets for therapy. RNAi as a technique can be used to suppress mis-regulated

oncogenes or oncomiRs via siRNAs, shRNAs, artificial miRNAs, anti-miRs, miRzips, sponges, ceRNAs, and artificial

lncRNAs . However, their delivery in vivo has always been a concern . Adenoviruses are promising in

vivo delivery vectors, at least in some cases  and have the potential to be very useful in this regard.

Similar to many other viruses, AdVs also encode suppressors of RNAi, namely VA1 (viral associated RNA 1) and VA2

RNAs . Usually removing such RNAi suppressors is known to enhance the efficiency of RNAi. Machitani et

al. demonstrated this by efficiently suppressing a gene, but only with a non-replicating adenovirus . On the other hand,

the VA (viral associated) RNA is very important for oncolysis. VA RNA being a pro-viral RNA that is essential for efficient

virus replication and inhibition of endogenous antiviral pathways, such as the PKR (Protein kinase RNA-activated)

pathway, RNAi, and oligo adenylate synthase (OAS) mediated pathways is essential for efficient virus production and

infectivity . Removing VA-RNA leads to 20–60-fold decrease in AdV copies, which is very critical for

effective oncolytic activity of adenoviruses . Therefore, although the efficiency of the RNAi could be moderate, using

replication of competent viruses without removing VA-RNA seems to be more effective for oncolysis . Being

very small in size, such RNAi-based effectors could be beneficial in designing combinatorial strategies where the size of

the engineered recombinant virus genome is very critical to maintain efficient packaging .

As with genes, several endogenous miRNAs and other lncRNAs can be targeted to enhance the detargeting and

retargeting ability of OAdVs . For instance, liver, where most of the OAdV sequestration is observed, overexpresses

miRNA122 and miR145. By incorporating multiple copies of miR122/145 target sites (in other words anti-miRs or

sponges) in the 3′UTR of essential adenovirus open reading frames ORFs, significant reduction of AdV replication in liver

was achieved . Many other studies have deployed similar strategies by targeting miR122, miR145, miR148, miR21,

and let7 . These miRNAs, which are overexpressed in liver but not in tumors, are very

useful in detargeting of AdV and they can be combined with other strategies. Since they are very small in size, it is a very

feasible method.

Similar to genes, which can act as oncogenes or tumor suppressors, miRNAs can also promote (onco-miRs) or inhibit

tumorigenesis (tumor suppressors). Typically, onco-miRs can be directly inhibited by using anti-miRs (sponges, ceRNAs) .

Ang et al. used OAdVs to target endogenous onco-miRs and inhibit EMT and tumor progression in triple-negative breast

cancer (TNBC) . They used an artificial lncRNA consisting of targets of nine onco-miRs overexpressed in TNBC cells, to

suppress them simultaneously. In another study, an artificial lncRNA was used to suppress six different miRNAs

simultaneously in sorafenib-resistant hepatocellular carcinomas (HCCs) . These cancers are usually difficult to treat and

this study showed the potential of RNAi-based therapies. These strategies are very versatile, as they can be used to

target multiple genes or miRNAs together, which otherwise is very difficult to accomplish .

Sometimes, overexpression of miRNAs (tumor suppressor miRNAs) could be beneficial in reducing tumor burden by

suppressing overexpressed oncogenes. For example, miR143 was overexpressed using OAdVs to suppress an

oncogene, Kirsten rat sarcoma viral oncogene homolog (KRAS), in colorectal cancer cells [206] and miR199 was
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overexpressed to address HCC .

In absence of natural miRNAs to suppress oncogenes, artificial miRNAs, siRNAs, and shRNAs can be used . The FGL2

gene in HCC tumors was targeted by using such artificial miRNAs to suppress angiogenesis.

Therefore, miRNAs, depending on their role, can be exploited for detargeting, retargeting, and as therapeutic agents by

OAdVs. Combining them with other strategies will enhance the potency of OAdV-based therapies . Luo et al. used a triple-

regulated OAdV carrying miR143, survivin, and RGD to enhance the effects of OAdVs . These RNAi methods are very

versatile as they can be used to target multiple genes or miRNAs simultaneously, which is difficult using any other

method. Since their size is relatively small, they can be easily engineered into some of the well-established and commonly

used vectors .

Unlike RNAi, which is mostly a post-transcriptional gene silencing mechanism, TALENs and CRISPRs have revolutionized

genome engineering and have opened up new avenues of targeted therapy . Oncogenes and tumor

suppressors can be manipulated using these techniques . Again, their delivery has been a big challenge. In some

cases, adenoviruses were effectively used to deliver these programmable nucleases or modifiers . Among

these genome engineering techniques, the nucleotide components determining the sequence specificity in CRISPRs

(guides) are smaller than those of TALENs. Hence, the CRISPR-based strategies seem more promising than TALENs.

They can potentially be accommodated in a non-helper-dependent viral vector, although most of the studies so far have

used helper-dependent viruses . Maggio et al. delivered functional gRNAs and human-codon-optimized

Cas-9 into a diverse array of human cells . Although some gene editing-based studies have shown promising results and

are going through clinical trials , creating mutations in the genome may not be a safe strategy, due to its

permanence and potential off-target activities. This may impart undesirable and irreversible damages to genome.

However, other CRIPR based tools like, modified CRISPR-based base editors, suppressors and enhancers (which do not

cleave the target) could be safer alternatives .

3.3. Selective (Conditional) Replication of Viruses in Specific Cells

The ability of oncolytic adenoviruses to replicate specifically in cancer cells will provide them a significant advantage over

traditional chemotherapies. In order to achieve this, an oncolytic adenovirus must: (i) demonstrate stability in vivo and

avoid potential degradation or uptake by non-target cells; and (ii) preferentially infect and replicate in cancer cells, thereby

providing limited delivery to normal cells via a conditionally replicative adenovirus (CRAd) . There are mainly two types

of CRAds: one uses a tumor-specific promoter to induce replication and the second uses the interaction of essential viral

genes with tumor-specific proteins.

Several genes are uniquely expressed or significantly overexpressed in tumors, often due to their promoters being active

in those tumor cells and microenvironments. Promoter-based CRAds are designed to express essential viral genes with

such promoters so that virus replication is possible only in those cells. The most prominent examples include Cox2 in

gastric cancer and pancreatic cancer and survivin in adult T cell leukemia or lymphoma  and lung, ovarian, and pancreatic

cancers. The HIF-responsive promoter in gliomas and meduloblastomas; and hTERT (human telomerase reverse

transcriptase) in bone and soft tissue sarcomas, as well as prostate, ovarian, esophageal, and GI cancers , among

many others.

The second type of CRAds involve mutations or deletions in the E1 region to allow tumor-specific replication . The E1

region of the adenovirus is involved in its replication and consist of 2 genes, E1A and E1B.These two genes encode

proteins essential for a “productive” adenovirus replication cycle . E1A encodes for proteins 243 R and 289 R, which

induce transcription of early viral gene regions and stimulate the entry of infected cells to the S phase of the cell cycle.

E1B encodes for proteins E1B19K and E1B55K, which are involved in inhibition of apoptosis via their interaction with p53

and Rb proteins in infected cells, among other important functions . E1A causes the induction of the S phase, which

has an apoptotic response and must be inhibited by E1B gene products in order to facilitate successful viral replication

cycle . Mutations or deletions in the E1 region abolish the interaction of viral proteins with either p53 via E1B

 or pRb via E1A  to target tumor cells defective for those gene products. ONYX-015 is a OAdV that lacks

the EB1B region and selectively replicates in mutated p53 tumors. Similarly, Ad∆24 is a OAd that has a mutation in E1A

and restricts replication to retinoblastoma protein (pRb) mutated cancer cells. Although these CRAds are better than first-

generation CRAds, such as onyx-015, they were not very effective in clinical trials when used alone . To target cancer

cells that harbor activating mutant KRAS (KRASaMut) but spare p53wild normal cells, Liu et al.  constructed the

Δp53REP2 promoter with deletion of its p53-response elements. This was used to regulate the expression of the hdm2

transgene in a novel E1B-55kD-deleted CRAd, the Ad-KRhdm2. The virus showed selective replication in colorectal

cancer cells with KRAS mutation and P53 WT. Furthermore, Kim et al., in an effort to augment radiation therapy,

generated double E1B 19kDa and E1B 55kDa deleted oncolytic adenovirus (Ad−ΔE1B55), which when combined with
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radiation therapy showed greater cytotoxicity than the single E1B-55kDA-deleted oncolytic AdV . Similarly, Yoon et al.

 demonstrated that combined deletion of E1B 19kDA and E1B 55kDA increased the cytotoxicity when combined with

cisplatin, which is a standard of care for many cancers, such as ovarian, cervical, breast, and bladder cancers.

3.4. Combinations of the Abovementioned Strategies and Other Anticancer Treatments for Enhanced
Specificity and More Effective Therapeutic Effect

We believe a combination of detargeting and retargeting strategies is more effective than either of them alone. This has

been demonstrated by combinations of targeted modifications in the host-interacting domains of viral proteins, such as

HVR regions of hexon and AB-loop regions of fiber.

Since a replication-competent adenovirus genome can accommodate up to ~3.5 kb of extra genetic material into its

capsid, other strategies to increase the specificity and efficiency can be combined. Selective expression of effectors and

conditional replication-based strategies are best combined with detargeting- and retargeting-based vector designs.

Nucleic-acid-based effectors (RNAi-based) are smaller in size and relatively easier to combine with other strategies.

Therefore, miRNAs, depending on their role, can be exploited for detargeting, retargeting and also as therapeutic agents

by OAdVs . Luo et al. used a triple-regulated OAdV carrying miR143, survivin, and RGD to enhance the effects of OAdVs

. Lou et al. overexpressed miR34a combined with overexpression of interleukin-24 (IL-24) using hTERT promoter-driven

E1A-D24-type CRAds to test against HCC . These methods are very versatile, as they can be used to target multiple

genes or miRNAs simultaneously, which is difficult to do using any other method. Some studies have targeted up to nine

miRNAs at once . Since their size is small they can be easily engineered into well established and commonly used vectors

.

Protein-based effectors such as interferon-α show toxicity when administered systemically . Yamamoto’s group

developed an OAdV (Ad5/Ad3-Cox2-ΔE3-ADP-IFN) that combines multiple strategies, including conditional replication,

detargeting and retargeting via the RGD motif and Ad5/3 chimeric fiber, overexpression of ADP and expression of

interferon-α to target pancreatic cancer . Another OAdV (CRAd-arresten-TRAIL) was developed to combine conditional

replication, engineered fibers, and expression of two protein effectors, arresten and TRAIL . Hemmiki’s group used OAdVs

(Ad5/3-Δ24aCTLA4) to express checkpoint inhibitors such as anti-CTLA4 in combination with Rb/p16-dependent CRAd

and chimeric fiber  to observe enhanced stimulation of T-cells in patients with advanced cancer.

Combining these strategies to improve tumor selectivity and specificity with other anticancer treatments, such as

chemotherapy and radiotherapy, can further improve the therapeutic outcomes . An interferon-expressing OAdV used

in combination with chemotherapy and radiotherapy significantly reduced the systemic toxicity and increased antitumor

effects . OAdVs seem to make targeted cells more sensitive to radiation-induced damages by suppressing dsDNA break

repair pathways . Their interaction with other conventional chemotherapies are not clear but they have been

found to be effective, as shown in the case of onyx-015 and other interferon-expressing CRAds . In some cases,

specific inhibitors of oncogenes were combined with CRAds. Nutins, known inhibitors of MDM2, which in turn suppresses

p53, were used in combination with a CRAd designed to overexpress p53 to get a much better effect than with p53-

overexpressing AdV alone .

Overall, combinations of these strategies enhance tumor selectivity and specificity. Depending on the context, such as the

type of tumor, genes needed to be targeted, and other conventional therapies available, one can tailor multiple

combinatorial strategies for a better therapeutic outcome.

4. Conclusions

Oncolytic viruses are novel and effective tools for delivering targeted therapy to cancer cells. They have the potential to

target any gene that is specifically expressed or overexpressed on the surface of a cancer cell. Most importantly, OVs can

exploit genes which are overexpressed, irrespective of their functional relevance to tumor biology. This makes a large

number of genes targetable which could not be targeted earlier by conventional therapies. The flexibility of DNA

manipulation to drive detargeting and retargeting of these viruses, combined with conditional replication and targeted

expression, allows for the combination of multiple good tools into one. This may enable us to design a therapy that is

more specific, targeted, and effective. Furthermore, the combination of these new therapies with conventional anticancer

therapies such as radiation and chemotherapy is very promising and may provide additional benefits to cancer patients
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