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I-Arginine is a semi-essential amino acid involved in numerous biological processes. It is a substrate for different
enzymatic reactions and is metabolized using three major known pathways in the body: (1) Arginase metabolizes |-
Arginine to l-ornithine, (2) I-Arginine decarboxylase metabolizes I-Arginine to agmatine, and (3) nitric oxide (NO) synthase
(NOS) uses I-Arginine to form NO and citrulline.
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| 1. Functional Role of I-Arginine in NO Formation

I-Arginine is the substrate used for NO production by NOS & due to its ability to cause NO generation, which has been
shown to be a major endothelial relaxation factor (able to increase vasodilation and reduce arterial blood pressure 224!
[B)), I-Arginine has considerable potential in becoming a tool to tackle cardiovascular issues €. For instance, in patients
with known endothelial dysfunction, |-Arginine supplementation (6—8 g per day) has been shown to improve endothelial
function and ultimately lower blood pressure (8],

Three isoforms of NOS have been identified; two of them (endothelial NOS &l and neuronal NOS B9 gre expressed
constitutively, while the last one is inducible and is mainly involved in the inflammatory/immune response [11J121[13](14]

In the reaction carried out by NOS, electrons are transferred to heme in the N-terminal domain [15][16] Electrons are taken
from nicotinamide adenine dinucleotide phosphate (NADP) using flavin adenine dinucleotide in the C-terminal reductase
domain 12, Once electrons are transferred to the N terminal oxygenase domain, NO and citrulline are formed via I-
Arginine oxidation I8 For NOS to function properly, there needs to be an ample amount of I-Arginine available for
this reaction 29, In addition, NADP, glutathione, tetrahydrobiopterin, and oxygen are needed for proper functioning 2121,

A substrate competition occurs between NOS and arginase 24123l Although the affinity for I-Arginine in NOS is much
higher than arginase, the speed of the reaction allows for substrate concentration. The speed of arginase rection is a
thousand times faster than NOS 24, Since these two enzymes compete for a common substrate, arginase will reduce the
amount of L-Arginine available for NOS to use [22128] yltimately decreasing the amount of NO produced.

| 2. Effects of I-Arginine on the Immune System

A large part of a nhormal immune system depends on the amount of |-Arginine available in the body. Arginase is known to
represent an integral part of certain granulocyte subsets, which can be released locally or systematically once there is an
immune response. In addition, there is an accumulation of immature myeloid cells that express arginase, which is

released when fighting off specific illnesses. These myeloid cells that express arginase can decrease the amount of I-
Arginine [Z711281(29],

T cell function has been shown to depend on I-Arginine levels BB A decreased ability of lymphocytes to proliferate has
been reported in critically ill septic patients and correlated to reduced availability of I-Arginine B2, Moreover, I-Arginine
administration has been found to be beneficial to maintain immune homeostasis (Figure 1), especially in terms of T cell
and macrophage function 31, In fact, I-Arginine is essential in the macrophage M1-to-M2 switch (241,
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Figure 1. Main effects of I-Arginine on the immune system.

A deficiency in |-Arginine has been shown to lead to a reduction in T cell proliferation and to cause a diminished response
in T cell-mediated memory B3, In vitro assays have validated that L-Arginine can restore the function of T cells 28],
Mechanistically, the immunosuppressive effects of myeloid-derived suppressor cells (MDSCs) due to |-Arginine depletion
and lymphocyte mitochondrial dysfunction have been demonstrated in models of cancer B9,

The expansion of MDSCs observed in COVID-19 has been directly correlated to enhanced arginase activity and
lymphopenia BZ. Monocytic MDSCs were significantly expanded in the blood of COVID-19 patients and were strongly
associated with disease severity; MDSCs were shown to suppress T cell proliferation and IFNy production, at least in part
through an arginase-dependent mechanism, strongly indicating a role for these cells in the dysregulated COVID-19
immune response 28l Indeed, MDSCs express high levels of arginase, which metabolizes I-Arginine to ornithine and
urea, effectively depleting this amino acid from the microenvironment B2, |-Arginine depletion is known to inhibit T cell
receptor signaling, eventually resulting in T cell dysfunction % and to increase the generation of reactive oxygen species
(ROS), thereby exacerbating inflammation E2144],

In a recent study focused on COVID-19, Dr. Claudia Morris and colleagues were able to determine the bioavailability of I-
Arginine in three cohorts: asymptomatic healthy adults, adults hospitalized with COVID-19, and children hospitalized with
COVID-19; they found that both adults and children affected by COVID-19 display significantly lower levels of plasma I-
Arginine (as well as |-Arginine bioavailability) compared to controls 42, Additionally, a low I-Arginine-to-ornithine ratio
observed in COVID-19 patients 22 indicates an elevation of arginase activity in these patients. In another study, plasmatic
L-Arginine levels were shown to inversely correlate with the severity of COVID-19 43, This study also revealed that the
expression of the activated GPIIb/llla complex (PAC-1), known to be involved in platelet activation and thromboembolic
events 44 is higher on platelets of patients with severe COVID-19 compared to healthy controls and inversely correlated
with the plasmatic concentration of I-Arginine 23],

These pieces of evidence seem to go against the recently proposed strategy of |-Arginine depletion in COVID-19, based
on the assumption that some steps in the viral lifecycle of SARS-CoV-2 could depend on |-Arginine residues (for instance,
the nucleocapsid protein has a 6.9% I-Arginine content) [43],

In fact, a decrease in the bioavailability of I-Arginine has been shown to cause a diminished T cell response and function,
eventually leading to an increased susceptibility to infections 847 Twelve weeks of continuous I-Arginine
supplementation significantly decreased the level of IL-21 8] while NO has been shown to suppress the proliferation and
function of human Th17 cells 49 which have been implied in the pathogenesis of the cytokine storm and of
hyperinflammatory phenomena observed in COVID-19 patients BUBLIBZIS8  Higher |-Arginine levels are associated with
lower levels of CCL-20, a ligand for CCR6, a part of the chemotaxis system that is induced in response to coronavirus
infections (21,

In vitro assays have demonstrated that the proliferative capacity of T cells is significantly reduced in COVID-19 patients
and can be restored through I-Arginine supplementation BZ. Corroborating these findings, recent metabolomics data
indicates that I-Arginine pathways are altered in COVID-19 patients 24 and an increased mRNA expression of arginase
has also been found in the peripheral blood mononuclear cells (PBMCs) of COVID-19 patients 53],

Of note, circulating levels of metabolites of the I-Arginine pathway can be affected by arginase activity in red blood cells
58] which is known to be affected by oxidative stress and can contribute to endothelial dysfunction observed in COVID-19
[B7: furthermore, I-Arginine metabolism is known to be altered in hemolysis 8. The exquisite balance between arginase
and NOS activity has also been shown to influence the inflammatory responses of gut resident macrophages 241,

To actually test I-Arginine in COVID-19 patients, based on the rationale described above, we designed a randomized
clinical trial to study the effects of adding |-Arginine orally (Bioarginina®, 1.66 g twice per day) to standard therapy in
patients hospitalized for COVID-19. The interim results, recently published B, revealed that patients who received I-



Arginine had a significantly reduced duration of the in-hospital stay, and a diminished respiratory support, compared to

patients in the placebo arm.

We speculate that I-Arginine supplementation could be also beneficial in controlling long-COVID-19, since the persistence

of chronic inflammation and endothelial dysfunction has been shown to be fundamental in COVID-19 sequelae [62[611(62]
(63],
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