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Electric motors are used extensively in numerous industries, and their failure can result not only in machine

damage but also a slew of other issues, such as financial loss, injuries, etc. As a result, there is a significant scope

to use robust fault diagnosis technology. In recent years, interesting research results on fault diagnosis for electric

motors have been documented. Deep learning in the fault detection of electric equipment has shown comparatively

better results than traditional approaches because of its more powerful and sophisticated feature extraction

capabilities.

electric motors  fault diagnosis  deep learning

1. Introduction

The electric induction motor is perhaps the most significant driver of today’s production activities and everyday life,

and it is extensively utilized in many sectors of production and manufacturing industries as well as in domestic

utility applications. An electric motor is a mechanical mechanism that transforms electrical energy. Most electric

motors work by generating force in the form of torque delivered to the motor’s shaft by interacting between the

magnetic field of the motor and the electric current in a wire winding. The failure or stoppage of this type of vital

electrical machine will not only harm the equipment itself but will also likely result in significant economic losses,

fatalities, pollution, and numerous other issues. Therefore, research into motor fault diagnostic technology is

extremely important.

The fault diagnostic technology can detect motor defects early in their development, allowing for prompt overhauls,

saving time and money on fault repairs, and enhancing the economic advantages while avoiding production

interruptions. Traditional fault diagnostic approaches need the artificial extraction of a considerable quantity of

feature data, such as time domain features, frequency domain features, and time–frequency domain features 

, which adds to the fault diagnostic uncertainty and complexity. Traditional fault diagnosis methods are unable to

meet the needs of the fault diagnosis in the context of big data due to the complex and efficient development of

motors, which presents the data reflecting the operating status of motors with the characteristics of massive,

diversified, fast flowing speed, and low value density of “big data” . Simultaneously, the advancement of

artificial intelligence technology encourages the evolution of fault diagnosis technology from traditional to intelligent

. Artificial neural networks (ANNs) were first introduced in the 1980s. Shallow neural networks may learn features

in an adaptable manner without creating exact mathematical models , eliminating the uncertainty and complexity

that human involvement brings. However, traditional shallow neural networks have drawbacks, including gradient
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vanishing problems, overfitting, local minima, and the requirement for extensive prior information, all of which

decrease the effectiveness of the fault diagnosis .

In 2006, Hinton et al.  developed the concept of deep learning (DL) and demonstrated that data characteristics

generated by a deep multilayer network structure may more accurately represent the original data, and that the

approach can effectively minimize the complexity of training deep neural networks. This has resulted in a surge in

deep learning related research in both academia and industry. In 2007, Bengio et al.  suggested the use of

unsupervised greedy layer-wise training to train deep neural networks so to optimize the structure of deep

networks parameters in order to improve the model generalization ability. Bengio et al.  have proposed using an

error backpropagation technique to better improve the deep network structure parameters. The use of this

approach increases model performance much further.

Deep learning has rapidly progressed in the academic and industrial sectors since its introduction. Many classic

recognition tasks have witnessed considerable improvement in recognition rates due to deep learning. The

capacity of deep learning to perform complicated recognition tasks has piqued the interest of many academics who

seek to understand more about its uses and theories . As a result, deep learning theory is widely utilized to

address issues in a variety of disciplines. Simultaneously, different and better deep learning algorithms are

continually suggested and implemented. Deep learning has just been developed in the last ten years, with

advances in image , speech , and face recognition , among advances in other disciplines. Deep learning-

based research is also in full swing in the field of motor defect diagnostics. Given that deep learning provides novel

concepts and methodologies for motor fault diagnosis, the literature methodically expounds on deep learning

theory and its use in motor fault diagnosis research.

2. Application of Deep Learning in Electric Motor’s Fault
Diagnosis

Bearing faults, stator faults, rotor faults, and air gap eccentricity faults are all common motor defects, with bearing

failures having the highest probability and rolling bearings being prone to gearbox faults.

Signal processing approaches combined with classification algorithms (such as support vector machines, decision

trees, K closest neighbors, etc.) are frequently used in classical fault detection to categorize and identify defects.

The signal processing method is one of them, and it employs several approaches depending on the type of fault.

When a motor bearing fails, for example, vibration signals or stator current signals are frequently used, and time–

frequency domain analysis, statistical analysis, wavelet decomposition, and other methods are used to extract

features from the signal when the motor rotor fails, while the time–frequency domain analysis, statistical analysis,

wavelet decomposition, and other methods are used to extract features from the signal. The stator current

detection method is the most often utilized. The features of the stator current signal are retrieved using the Fourier

transform or the Hilbert transform since the stator current signal is straightforward to gather. When a motor stator

breaks, a mathematical model or the determination of the motor problem is typically applied. The defect is

diagnosed using the current and voltage signal detecting approach. When using the signal detection method,
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feature extraction calculations are still required; however, when the motor has an air gap eccentric defect, the

current signal analysis approach is frequently utilized to diagnose the fault.

Artificial feature selection and extraction are always necessary for the generally used traditional motor fault

diagnosis methods, which raises the uncertainty of the motor fault diagnosis and affects the accuracy of motor

problem diagnosis. The deep learning model may extract features from the source signal in an adaptive manner,

thereby avoiding the impact of artificial feature extraction.

2.1. Application of Deep Belief Network (DBN)

Figure 1 depicts a fault diagnostic framework based on the existing DBN-based motor fault diagnosis method,

which consists mostly of the following steps:
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Step—1: Obtain the time/frequency domain signals of the equipment under normal and fault situations using

sensors and signal preprocessing technologies;

Step—2: Split the signal into training and test sets after segmenting and normalizing it;

Step—3: Create a multi-hidden-layer DBN model and utilize the training data for layer-by-layer unsupervised and

greedy training;

Step—4: Use category information to fine-tune the DBN model parameters;

Step—5: Perform fault diagnosis on the test set using the trained DBN model.

Figure 1. Fault diagnosis framework of

DBN.

2.2. Application of

Self-Encoding Network

The diagnosis framework is depicted

in Figure 2 and summarizes the available electric motor fault diagnosis approaches based on deep self-encoding

networks. It essentially contains the following steps:
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Step—1: Obtain signals from the equipment in both normal and defective states using sensors;

Step—2: Separate the signal into training and test sets by preprocessing it;

Step—3: Create a deep self-encoding network model based on the data selection reconstruction error and use the

training set for unsupervised and greedy layer-by-layer training;

Step—4: Add a classification algorithm to the top layer, then tweak the parameters of the entire deep self-encoding

network or simply the classifier parameters as needed;

Step—5: Perform the defect diagnosis on the test set using the learned deep self-encoding network model.

Figure 2. Fault diagnosis framework of stacked AE.

Self-encoding

networks, also known as deep self-

encoding networks, are primarily utilized for noise reduction and feature extraction in the context of fault detection.

In comparison to DBN, the self-encoding network training involves fewer samples, and the feature extraction has a

higher ability while being more robust.

2.3. Application of Convolutional Neural Network (CNN)

Figure 3 depicts the CNN-based motor defect diagnosis system. The following are the main steps in order:
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Step—1: Obtain the time domain or frequency domain signals from the equipment under normal and abnormal

conditions using sensors;

Step—2: Separate the signal into training and test sets by preprocessing it;

Step—3: Using the received data, determine the size, number, scanning step, and the number of hidden layers of

the CNN and create a CNN model;

Step—4: Use the training set for supervised training after initializing the CNN network parameters and keep

updating the network parameters until the maximum number of iterations is reached;

Step—5: Perform the fault diagnostics on the test set using the trained CNN model.

Figure 3. CNN fault diagnosis framework.

The CNN is a deep learning model that

specializes in processing large

amounts of data, but it has limits when it comes to diagnosing electric motor faults. The CNN is often limited to

processing one-dimensional signal data, with the multidimensional data processing capabilities being limited. In

terms of the types of faults the CNN for multidimensional data processing can handle, more research is needed

.

2.4. Application of Recurrent Neural Network (RNN)

Figure 4 depicts an LSTM-based fault diagnosis architecture.
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Figure 4. LSTM fault diagnosis framework.

The sluggish training pace of traditional RNNs is also of concern . To address this issue, the literature  has

proposed a fault detection method for asynchronous motors that combines RNN with dynamic Bayesian networks

while also training the neural network using the simultaneous perturbation stochastic approximation (SPSA)

method, which improves the training efficiency and fault diagnosis accuracy. A robust RNN adaptive gradient

descent (RAGD) training technique was published in the literature , which considerably improves the RNN

training speed. Using diagonal RNNs, the literature  presents a method for diagnosing interturn defects in the

stator windings of asynchronous motors. RNNs with deviation units are used in the literature  to implement

distortion voltage waveforms based on rectifiers. This method for diagnosing complex power electronic equipment

or systems has been shown to be useful through fault classification and in experiments. An upgraded echo state

network based on the RNN is applied to electromechanical systems in the literature .

2.5. Other Customized Deep Learning Methods

Despite the four conventional deep learning networks discussed above, researchers are still working to improve the

detection method of occurring faults in electric machines and have developed several customized deep learning

structures which showed a significant amount of perfection upon deploying to fault diagnosis. Chengjin et al. 

have developed deep twin convolution neural networks with multidomain inputs (DTCNNMI) which builds three

input layers so to integrate automatically extracted time domain, time–frequency domain, and hand-crafted time

domain statistical characteristics, thereby resulting in improved model performance. The use of twin convolutional

neural networks with large first layer kernels for extracting multidomain information from vibration signals is

demonstrated, as is the resistance to the effects of ambient noise and changes in the operating circumstances on

the final diagnostic findings. The efficacy of the suggested technique is demonstrated by comparing it to current

representative algorithms and using experimental datasets. Taking into consideration the prospect of fault

diagnosis under noisy environments, Dengyu et al.  have proposed a noisy domain adaptive marginal stacking
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denoising autoencoder (NDAmSDA) based on acoustic signals to mitigate the problem of domain shifting by

introducing Transfer Component Analysis (TCA) and by speeding up the training process by replacing the

traditional gradient decent of backpropagation with a forward closed-form solution, which enables the feasibility of

reducing the difference between numerous noise levels as well as moving the classifiers from one noisy domain to

others. An unsupervised deep learning network with mutual information (MI) , which is called deep mutual

information maximization (DMIM), has been used to determine motor faults considering both global and local MI.

The MIs between the output and multiple levels or areas of representations are estimated and maximized

simultaneously using the f-divergence variational divergence estimation technique. It has been noted as a pioneer

where a deep neural network input and output of mutual information has been maximized so to create a motor

defect diagnosis model where the working environment is complex and noisy.
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