Role of PARP in TNBC

Subjects: Biochemistry & Molecular Biology

Contributor: Dharmendra Yadav

Triple-negative breast cancer is a combative cancer type with a highly inflated histological grade that leads to poor theragnostic value. Gene, protein, and receptor-specific targets have shown effective clinical outcomes in patients with TNBC. Cells are frequently exposed to DNA-damaging agents. DNA damage is repaired by multiple pathways; accumulations of mutations occur due to damage to one or more pathways and lead to alterations in normal cellular mechanisms, which lead to development of tumors. Advances in target-specific cancer therapies have shown significant momentum; most treatment options cause off-target toxicity and side effects on healthy tissues. PARP (poly(ADP-ribose) polymerase) is a major protein and is involved in DNA repair pathways, base excision repair (BER) mechanisms, homologous recombination (HR), and nonhomologous end-joining (NEJ) deficiency-based repair mechanisms. DNA damage repair deficits cause an increased risk of tumor formation. Inhibitors of PARP favorably kill cancer cells in BRCA-mutations. For a few years, PARPi has shown promising activity as a chemotherapeutic agent in BRCA1- or BRCA2-associated breast cancers, and in combination with chemotherapy in triple-negative breast cancer.

breast cancer PARP (poly(ADP-ribose) polymerase) TNBC therapeutic target

DNA damage repair signaling pathway

1. Introduction

Breast cancer (BC) is the most common cancer that occurs in women worldwide [1]. BC is caused by accumulation of somatic mutations in breast cells, which impair cell division and DNA repair mechanisms, resulting in irregular cell growth proliferation, differentiation, and ultimately, progression of tumorigenesis [2][3]. Triple-negative breast cancer is more belligerent and has a poorer prognosis than other types of breast cancer. Triple-negative breast cancer (TNBC) accounts for approximately 15% of all BC, and lacks human epidermal growth factor receptor 2 (HER2), progesterone receptor (PR), and estrogen receptor (ER) expression and amplification. If we compare it with another type of BC, TNBC exhibits inherently aggressive clinical symptoms and poorer clinical outcomes [4][5][5][2]. Presently, the clinical targeted drugs for BC include poly-(ADP)-ribose polymerase (PARP) inhibitors (PARPi), CDK4/6 inhibitors (CDK4/6i), PI3K inhibitors, and AKT inhibitors—but none of these drugs alone are very effective against TNBC [8]. There is an urgent need for the rational exploration of drug compatibility and potential targets for TNBC [7][8]. PARP1 (poly (ADP-ribose) polymerase 1) was discovered approximately 50 years ago and is involved in gene transcription, DNA repair, and cell death [9]. PARP1 has acceptable therapeutic importance against cancer, as shown in Figure 1 and Figure 2 [10]. PARP inhibitors have emerged as effective treatments in clinical trials for sporadic TNBC and BRCA-associated cancers [11]. There are various types of PARP inhibitors under clinical trial

such as olaparib, BSI-201, talazoparib, rucaparib veliparib, and niraparib [10][11]. Inhibition of the PARP-1 and PARP-2 enzymes is believed to be attained mainly via binding of the NAD+ catalytic domain side chain, extending out of the NAD catalytic site of the PARP inhibitor [12]. It also thought that the PARP enzyme locks on to the site of DNA damage, preventing its usual release from DNA molecules [10][11][12][13][14][15]. PARP-1 binds to the damaged site through its zinc-finger domains in the presence of SS (single-stranded)-DNA breaks [13]. PARP-1 and poly (ADP) polymerization recruits and binds other DNA-repair proteins, leading under normal cell physiology to an increasingly negative charge on the enzyme, and eventual dissociation from the DNA [14]. Some clinical investigations have shown the need for HRD (homologous recombination DNA repair) in facilitating PARP inhibition, via loss of *BRCA* function [16][17]. Researchers from the field have suggested that PARP inhibition is associated with the induction of DNA damage by chemotherapy in the more general cohort of TNBC.

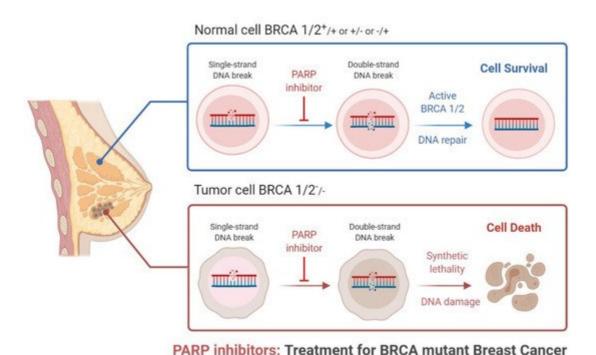
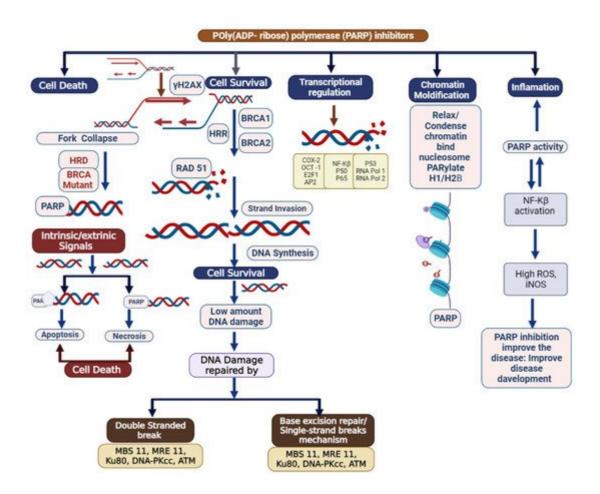



Figure 1. Role of PARP inhibitors in treatments for BRCA mutant breast cancer.

Figure 2. Schematic delineating the multifaceted nature of poly (ADP) ribose polymerase (PARP): DNA repair, chromatin modification, inflammation, transcriptional regulation, and cell death. Potential role of elevated PARP-1 in tumorigenesis. After DNA damage, PARP-1 activates DNA repair. However, PARP-1 also acts as a co-activator of NFkB signaling, which can propagate inflammatory signaling and lead to more DNA damage, including the formation of oxidatively clustered DNA lesions (OCDLs). The formation of OCDLs is elevated in numerous tumor types. PARP-1 activity could potentially be beneficial or harmful in the repair of ROS-induced DNA lesions.

2. Clinical Applications of PARP Inhibitors in TNBC

PARP inhibitors have been shown to have effective clinical outcomes against different types of cancer. There are various clinical trials registered investigating PARPi therapies (**Table 1**, **Table 2** and **Table 3**).

Table 1. List of PARP inhibitors.

Compound Name	Compound Structure	Efficacy	IC ₅₀
Nicotinamide	NH ₂	PARP inhibitor and by-product of the PARP reaction; many pharmacological actions other than that of inhibiting PARP	210 μΜ

Compound Name	Compound Structure			Efficacy			IC ₅₀
3- aminobenzamide	ONH ₂	E		e free radical scav bharmacological a	-	mong othe	r 33 μΜ
PD128763	NH O	Cyl		ent, chemosensitize ot of compound ca			zer; 420 nM
DPQ	N N	A co		Varner–Lambert F based on an isoquinoline		bitor comp	ound 1 μΜ
NU1025	OH NH		Р	otentiators of anti agent cytotoxic			400 nM
4-ANI	H NH ₂		PARP	in DNA repair and	d cell dea	th	180 nM
ISO	OH H		PARP	in DNA repair and	d cell dea	th	390 nM
Olaparib (Lynparza)		chem	oreast cancer, wortherapy, show	sitive patient with vithout the initial u ved significant rap le patient experie	se of plat id near-re	inum-base solution of	d 1 large nM
Niraparib (Zejula)	O NH ₂	Nira	•	nation with pembro lle-negative breas		in patients	with 4 nM
Talazoparib	N-N N N N N N N N N N N N N N N N N N N	Ferr	m line <i>BRCA</i> -m	utant, <i>HER2</i> -nega	ative local	ly advance	d or 0.6
Name of the Molecules	T _{max} (h)	t (h)	AUC (lgh/ mL)	C _{max} (lg/mL)	CL/F (L/h)	V _z /F	Reference
Olaparib capsule formulation 300 m		13.02 (8.23)	55.20 (67.4)	8.05 (24.3)	6.36 (3.47)	112.1 (59.84)	[<u>18]</u>

Name of the Molecules	T _{max} (h)	t (h)	AUC (Igh/ mL)	C _{max} (lg/mL)	CL/F (L/h)	V _z /F	References
Olaparib tablet formulation 300 mg single dose (fasted)	1.50 (0.50– 5.85)	12.2 (5.31)	43.6 (54.3) [AUC _t] 43.0 (55.2) [AUC]	7.00 (35.0)	7.95 (4.23)	146 (142)	[<u>19</u>]
Olaparib tablet formulation 300 mg single dose (fed)	4.00 (1.00– 12.0)	12.2 (5.31)	46.0 (56.6) [AUC _t] 45.4 (57.1) [AUC]	5.48 (40.5)	7.55 (3.99)	127 (107)	[<u>19</u>]
Veliparib monotherapy 40 mg (10 mg, fasting)	1.2 ± 0.8	5.9 ± 1.3	2.23 ± 0.82 [AUC _t] 2.43 ± 1.07 [AUC]	0.36 ± 0.13	19.0 ± 7.36	NA	
Veliparib monotherapy 40 mg (10 mg, fed)	1.2 ± 0.7	5.8 ± 1.2	$2.45 \pm 0.93 \\ \text{[AUC$_{t}$]} \\ 2.65 \pm 1.17 \\ \text{[AUC$_{t}$]}$	0.37 ± 0.12	17.3 ± 6.41	NA	[<u>20]</u> [21]
Veliparib monotherapy 40 mg (40 mg, fasting)	1.3 ± 0.9	5.8 ± 1.3	2.24 ± 0.98 [AUC _t] 2.45 ± 1.24 [AUC _t]	0.34 ± 0.12	19.5 ± 7.66	NA	
Veliparib monotherapy 40 mg (40 mg, fed)	2.5 ± 1.1	5.8 ± 1.4	$2.14 \pm 0.80 \\ [AUC_t] \\ 2.35 \pm 1.06 \\ [AUC_t]$	0.28 ± 0.09	19.7 ± 7.51	NA	
Veliparib metabolite M8	2.4 (3.5– 9.8)	_	0.3–1.9 [AUC _{int}]	0.011 (0.007– 0.014)	NA	NA	[20][21]
Niraparib 300 mg/day	3.1 (2.0– 6.1)	а	14.117 (AUC24)b	1.921	NA	NA	[12]
Niraparib metabolite: unlabeled M1 plasma	9.02	78.4	41.2 (AUC _t)	476	NA	NA	[<u>15</u>]

Table 3. Clinical Trials of PARP Inhibitors in TNBC.

Name of Drug	Types of Inhibitors	Prior Treatment	Type of Population	Status	ClinicalTrials.gov Identifier
AZD1775 in patent with	PARP Inhibitor, patent with TNBC	Olaparib in combination with	Inhibitor of Ataxia-Telangiectasia and WEE1 inhibitor	Phase II	NCT03330847

Name of Drug	Types of Inhibitors	Prior Treatment	Type of Population	Status	ClinicalTrials.gov Identifier
TNBC LYNPARZATM		AZD6738 mutated (ATM)			
AZD1775 in patent with TNBC LYNPARZATM	PARP Inhibitor, patent with TNBC	Olaparib with radiation therapy, after chemotherapy	Inhibitor of ataxia-telangiectasia	Phase I	NCT03109080
AZD1775, LYNPARZATM	Patent with TNBC	Olaparib with atezolizumab	Inhibitor of PD-L1	Phase II	NCT02849496
AZD1775, LYNPARZATM	Patent with TNBC	Oolaparib with paclitaxel and carboplatin	Inhibitor of germline <i>BRCA</i> mutated	Phase II/III	NCT03150576, NCT02789332
AZD1775, LYNPARZATM	Patent with TNBC	Olaparib with AZD2171 orally	Inhibitor of <i>VEGFR</i> tyrosine kinase	Phase I/II	NCT01116648
AZD1775, LYNPARZATM	Patent with TNBC	Olaparib with PI3K inhibitor, BKM120	Inhibitor of BKM120	Phase I	NCT01623349
AZD1775, LYNPARZATM	Patent with TNBC	Olaparib with onalespib	Inhibitor of heat shock protein 90	Phase I	NCT02898207
AZD1775, LYNPARZATM	Patent with TNBC	Olaparib with AZD2014	mTORC1/2 or Oral AKT inhibitor	Phase I/II	NCT02208375
PARP1/2 inhibitor Veliparib	Patent with TNBC	Veliparib in combination with cyclophosphamide	Inhibitor of <i>EGFR</i> , <i>HER2</i> , <i>BRCA</i> , and tyrosine kinase	Phase II and failed in phase III trials	NCT01306032
PARP1/2 inhibitor Veliparib	Inhibitor of tyrosine kinase, <i>HER2</i> , and <i>BRCA</i>	Veliparib in combination with carboplatin	Patients with TNBC	Completed phase I study	NCT01251874
PARP1/2 inhibitor Veliparib	Inhibitor of <i>EGFR</i> , <i>BRCA</i> , and tyrosine kinase	Veliparib with vinorelbine	Patients with TNBC	Completed phase I	NCT01281150
PARP1/2 inhibitor Veliparib	Inhibitor of EGFR, HER2, BRCA, and tyrosine kinase	Veliparib with cisplatin	Patients with TNBC	Completed phase I	NCT01104259
PARP1/2 inhibitor	Inhibitor of EGFR, HER2, BRCA,	Veliparib with pegylation	Patients with TNBC	Completed phase I	NCT01145430

Name of Drug	Types of Inhibitors	Prior Treatment	Type of Population	Status	ClinicalTrials.gov Identifier
Veliparib	and tyrosine kinase				
PARP1/2 inhibitor Veliparib	Inhibitor of EGFR, HER2, BRCA, and tyrosine kinase	Veliparib with pegylation	Patients with TNBC	Completed phase I	NCT01145430
PARP1/2 inhibitor Veliparib	Inhibitor of EGFR, HER2, BRCA, and tyrosine kinase	Veliparib with lapatinib	Patients with TNBC	Phase I	NCT02158507
PARP1/2 inhibitor Veliparib	Inhibitor of EGFR, HER2, BRCA, and tyrosine kinase	Veliparib in combination with irinotecan HCI	Patients with TNBC	Phase I I	NCT00576654
PARP1/2 inhibitor Veliparib	Inhibitor of EGFR, HER2, BRCA, and tyrosine kinase	Veliparib with cisplatin	Patients with TNBC	Phase II	NCT02595905
AZD2281 and Ku-0059436 PARP1/2 inhibitor (Selective)	PARP inhibitor; <i>BRCA</i> Mutated	Olaparib alone, or in combination with durvalumab MEDI4736 against PD-L1	HER2-negative treated mTNBC	Phase-II	NCT00679783 NCT03544125 NCT02484404 NCT03167619 NCT02681562 NCT02484404
PARP1/2 inhibitor Veliparib	Inhibitor of EGFR, HER2, BRCA, and tyrosine kinase	Veliparib plus carboplatin	Patients with TNBC	Phase III	NCT02032277
Iniparib BSI- 201 and SAR240550	Competitive PARP inhibitor; ability to form adducts with many cysteine-containing proteins	Combination with gemcitabine and carboplatin	Patients with TNBC	Phase II	NCT00813956 NCT01045304 NCT01130259
Iniparib BSI- 201 and SAR240550	Competitive PARP inhibitor; ability to form adducts with many	Combination of iniparib with paclitaxel for	Patients with TNBC	Competed phase II	NCT01204125

lame of Drug	Types of Inhibitors	Prior Treatment	Type of Population	Status	ClinicalTrials.go Identifier
	cysteine-containing proteins	TNBC compared to paclitaxel alone			
Iniparib BSI- 201 and SAR240550	Competitive PARP inhibitor; ability to form adducts with many cysteine-containing proteins	Iniparib with irinotecan	Patients with TNBC	Phase II trial	NCT01173497
Niraparib	≥1 anti- HER2 treatment; PARP inhibitor	Niraparib plus trastuzumab IV	Metastatic <i>HER2</i> + breast cancer	Phase lb/II (recruiting)	NCT03368729
Niraparib	PARP inhibitor	One anthracycline and/or taxane in the (neo-) adjuvant or Niraparib	Advanced/metastatic <i>BRCA1</i> - like	Phase-II, Active, not recruiting	NCT02826512
Niraparib	PARP inhibitor	≥1 line of therapy Niraparib plus everolimus	Patients with TNBC	Phase I Recruiting	NCT03154281
Niraparib	Germline BRCA mutation-positive (PARP inhibitors)	≤2 prior cytotoxic regimens and Niraparib versus physician's choice	Advanced or metastatic breast cancer	Phase III Active, not yet recruiting	NCT01905592 (BRAVO)
Niraparib	Metastatic TNBC inhibitors (PARP inhibitors)	≤2 lines of cytotoxic therapy, Niraparib plus pembrolizumab	Advanced or metastatic TNBC	Phase I/II Active, not yet recruiting	NCT02657889 (KEYNOTE-162)
veliparib	Metastatic TNBC inhibitors (PARP inhibitors)	≤2 lines of cytoloxic Chemotherapy, Carboplatin, and paclitaxel with or without veliparib	Locally advanced unresectable <i>BRCA</i> associated	Phase III Recruiting	NCT02163694 [<mark>34</mark>]
veliparib	Metastatic TNBC inhibitors (PARP inhibitors)	Veliparib with temozolomide versus veliparib with carboplatin and paclitaxel versus placebo	Metastatic 2 TNBC	Randomized phase II, Ongoing	NCT01506609 [<u>36][38]</u>

and PFS were analyzed further in a phase III clinical trial; the trial did not find successful treatment of patients [38].

2.3. Niraparib

Niraparib is a PARP1 and PARP1 inhibitor. Niraparib is indicated as a maintenance treatment for recurrent cancer patients, mainly with HR deficiency (HRD) with positive status [35][39]. HRD has been linked to deleterious *BRCA* mutations in patients, with disease development occurring more than six months later following platinum-based chemotherapy [35][39]. Niraparib was extended for use in the care treatment of adults following first-line platinum-based chemotherapy [29][35].

Name of Drug	Types of Inhibitors	Prior Treatment	Type of Population	Status	ClinicalTrials.@	<u>¥</u> 39][40][41]
		with carboplatin and paclitaxel ≤2 lines <mark>3%[39][40</mark> cytotoxic chemotherapy	<u>[38][39][40][41</u>]			t cancer; and the e IDMC BRAVO
veliparib	Metastatic TNBC inhibitors (PARP inhibitors)	Veliparib versus atezolizumab versus veliparib plus atezolizumab	Stage III–IV TNBC [38][39	III <mark>40 41</mark> <mark>41 41 41 </mark> Dinase II Ongoing	NCT02849496	aparib in
veliparib	Metastatic TNBC inhibitors PA <mark>配介i的</mark> ibitors)	Cisplatin and placebo versus cisplatin and veliparib ≤1 line of cytotoxic chemotherapy for metastatic disease	Metastatic TNBC and/or BRCA mutation-associated breast cancer	Phase II Active, not recruiting	NCT02595905	cokinetic erapy in otherapy, ted with
veliparib	Metastatic TNBC inhibitors PARP inhibitors)	Temozolomide and veliparib ≥1 chemotherapy regimen	Metastatic TARGE and/or BRCA mutation-associated breast cancer	Phase II, Active, not recruiting	NCT01009788	in TNBC showing
Talazoparib	Neoadjuvant therapy	None	Primary breast cancer ≥1 [48]↑44 ↓453 deleterious BRCA mutation	Phase II, Active, not recruiting	NCT02282345	Veliparib
Talazoparib [<u>43][44][45]</u>	Advanced TNBC and HR deficiency and advanced HER2-negative breast cancer or other solid tumors with a mutation in HR pathway genes	≥1 line of therapy	Talazoparib	Phase II, Recruiting	[43][44][45] NCT02401347	.%), with Ils show In treated ion. Cell Veliparib
Talazoparib	Metastatic TNBC inhibitors PARP inhibitors [45]	Platinum- containing regimen with disease progression > 8 weeks	Metastatic breast cancer with <i>BRCA</i> mutation	Phase II Terminated (Primary Analysis and study completed Not stopped	№]702034916 (ABRAZO)	atin as a utcomes % in the

stage II–III TNBC with no previous therapy for potentially curative surgery—they were randomly assigned to two groups; group I was treated with 50 mg veliparib orally twice a day, with 12 weekly doses of 80 mg/m² intravenous paclitaxel, and carboplatin administered every 3 weeks, for 4 cycles [43][44][45]. Patients with a germline *BRCA* mutation were then allocated to group II and administered cyclophosphamide and doxorubicin every 2–3 weeks for 4 rounds [44]. Effective clinical outcomes were observed to be higher in 53% of patients with combined therapies in comparison to patients who received paclitaxel alone (31%). No significant toxicity was observed against Veliparib. [43][44][45].

2.5. Talazoparib (BMN-673)

Name of Drug	Types of Inhibitors	Prior Treatment	Type of Population	Status	ClinicalTrials.go Identifier	v process
Talazoparib	Metastatic TNBC inhibitors PARP inhibitors	≤3 chemotherapy- inclusive regimens Talazoparib versus physician's choice	Lopathy430 vanced and/or metastatic breast cancer with germline <i>BRCA</i> mutations	Phase III Completed	[<u>46</u>] NCT01945775 (EMBRACA)	arib is a efficacy multiple
Rucaparib	Metastatic TNBC inhibitors PARP inhibitors	≤5 prior chemotherapy Rucaparib regimens in the last 5 years	Patients presenting with metastatic breast cancer (MBC)	Phase II, Completed	[<u>46</u>][<u>47</u>][<u>48</u>] NCT00664781	I clinical efficacy onths for efficacy
Rucaparib	Metastatic TNBC inhibitors PARP inhibitors	≥1 line of chemotherapy, Rucaparib	Patients with a <i>BRCA</i> ness genomic signature	Phase II Completed	NCT0 3 8 (RUBY)	ne PARP sociated
Rucaparib [<u>4</u>	Stage I–III patients with TNBC or inhibitors PARP inhibitors	oadjuvant chemotherapy Cisplatin with rucaparib	ER/PR+, HER2- negative breast cancer with known BRCA1/2 mutations	Phase II Completed	NCT01074970	ane as a criteria: 95% CI:
Rucaparib	[47][48] TNBC inhibitors	≥3 prior chemotherapy regimens, Rucaparib	Patients with advanced solid tumors with evidence of germline	Phase I/II Active, not recruiting	NCT01482715	en label) with no the FDA
Rucaparib	TNBC inhibitors	≤5 prior chemotherapy regimens in the last 5 years, Rucaparib	Patients with MBC carriers of a <i>BRCA1/2</i>	Phase II Completed	NCT00664781	The FDA uspected
Rucaparib	TNBC inhibitors	≥1 line of chemotherapy Rucaparib	Patients with a <i>BRCA</i> ness genomic signature	Phase II Completed	NCT02505048 (RUBY)	
Rucaparib	TNBC inhibitors	Neoadjuvant chemotherapy Cisplatin with rucaparib	Advanced solid tumors with evidence of germline or somatic <i>BRCA</i> mutation	C <mark>(49</mark>)leted	NCT01074970	e and/or ed as a or more
Rucaparib	[50] TNBC inhibitors	≥3 prior chemotherapy regimens	Advanced solid tumors with evidence of germline or somatic <i>BRCA</i> mutation	Phase I/II Active, not recruiting	NCT01482715	m-based d earlier ent dose

concentrations ^[51]. Efficacy and safety levels were evaluated, such as pharmacodynamics, pharmacokinetic dose-limiting toxic effects, and tolerability ^[52]. Intravenous rucaparib was given and the objective response rate was analyzed: 41% of patients showed an ongoing response for at least 12 weeks ^[53]. The efficacy and safety of rucaparib in patients with *HER2*-negative metastatic breast cancer were associated with *BRCA*ness phenotype and/or a somatic *BRCA* mutations ^{[49][50][51][52][53]}. Patients received 600 mg rucaparib orally for 21 days or up to the development of the disease. The main endpoint was the clinical benefit rate and secondary endpoints, including PFS, overall survival, safety, and the prognostic value of the *BRCA*ness signature ^{[49][50][51][52][53]}. An additional study determined the quantity of sporadic TNBC patients likely to benefit from rucaparib treatment ^{[49][50]}[51][52][53]

2.1. Olaparib 2.7. Checkpoint Inhibitors

TO NASPATILIS i pues lipio tento o map PAAR Priediti bieto it deffe atiis everagia ignstule EtiCA\$ aergla ERIC/Alzionnutratienss of PAR Priediti bieto it deffe atiis everagia ignstule EtiCA\$ aergla ERIC/Alzionnutratienss of PAR Priediti bieto it deffe atiis everagia ignstule EtiCA\$ aergla ERIC/Alzionnutratienss of PAR Priediti bieto it deffe atiis everagia ignstule EtiCA\$ aergla ERIC/Alzionnutratienss of PAR Priediti bieto it deffe atiis everagia ignstule EtiCA\$ aergla ERIC/Alzionnutrations so de Pariediti bieto it definition in the PAR Priediti bieto it de PA etially ación e badapozariot vzpoczacieles outrus i rexpil caso, no teo thiz rapynion anizatis nos while observamin en BiBiCAS/2 and ut RIARIS [24] 124| 125s. OTangear FED A a sa politorizest entred to abbe politicantet wild be acted a little of a vide of a v midta29&ipaRiPallst.-posicive/fiblB Ceffetive.optiroval thesalpaseas orbsbevedbasel 2 9Mpasticadse seadfildscools pateiteviee insthisaxieniemt doose lanionmi Rienulonollosenalb isatieses ovith appload can be Roulo in thations I rag, appropriet tleep5D\$einalte)vo2020(461%)atiestebsiehvertelias23tipaTNeBlS whlose 400nong ebgsæssieePd2ily1 AonOtrRedofo6s(1926%)sowae (OBS)) ved in 02 70 patricement, wath 0.00 morn dosesy twice-Dalla place of the contract of th andc4/bl6a(25%))) eviald | Lowert based in nTNiBCD patifents. the high tested bs e-SeS(2d triable) NS, T6404237(9); especializations. obsadjevlastichlusschremotherapytiergemalese aatmoldgig oon Placeauespergemalese van die verbeing van die ve outopares) with other motaleisanty and a lie is with a searly TNB 100 (2015 % rial, 5=4m, 21 by 25, do < 0.0 a pati) monother apy in germline BRCA mutations with HER2 negativity and, at minimum, previous chemotherapy therapy $\frac{29}{2}$. A total of 300 patients were selected randomly in a 2:1 ratio into two groups; group one was administered 300 mg olaparib twice daily, and 92 patients in group two were administered vinorelbine or capecitabine and eribulin in 21-day **References** cycles. Out of 300, 49.8% of the TNBC patients were included in the olaparib group and 49.5% of the TNBC patients, received at and arother and a larger at the properties of the allegation o the 2011 glace to be any upstragates the interest are bithe; the 2011 glace to be a contracted to be a contr CI, Offitipes Of A Carred J. J. n. Clina. sabaro up sing by ais 4 the hazard ratio for PFS was 0.43 (95% CI, 0.29–0.63) for patients with TNBC [3][28][29][30]. The response rate was 59.9% in the olaparib group and 28.8% in the standard 2. Rummel, S.K.; Lovejoy, L.; Shriver, C.D.; Ellsworth, R.E. Contribution of germline mutations in therapy group, while the rate of grade 3 or higher adverse events was 36.6% in the olaparib group and 50.5% in cancer predisposition genes to tumor etiology in young women diagnosed with invasive breast the standard therapy group; the rate of treatment discontinuation due to toxic effects was 4.9% and 7.7%, cancer. Breast Gancer Res. Treat. 2017, 164, 593–601. respectively paro Griesstryeld. Dia Yraedasse Dafkot Fred Bactorso teurotinale Taruptettien groof julgentei pale c Reprocuptorise of 27424 hertaperiuti its mainly excented kthoog brinka (1449%) edirchieces (1429%) rike hotherapy. Biomedicines 2021, 9, 876.

4. Medina, M.A.: Oza, G.: Sharma, A.: Arriaga, L.G.: Hernández Hernández, J.M.: Rotello, V.M.: Olympiad was a randomized open clinical phase ill trial (NCT02000622) assessing the daily administration of 600 Ramirez, J.T. Triple-Negative Breast Cancer: A Review of Conventional and Advanced my olaparib tablets. A total of 302 patients who had received two or fewer prior treatments were randomized in a Therapeutic Strategies. Int. J. Environ. Res. Public Health, 2020, 17, 2078. PFS with olaparib versus stabled khelaps (Teon v.S. 4.2 nemths; Yazkutorano Q.: FS.L.). Strice to dancer Strategies. With olaparib versus stabled khelaps (Teon v.S. 4.2 nemths; Yazkutorano Q.: FS.L.). Strice to dancer Strategies were obshegative the east Cancer strategies were obshegative the east of the stability than standard chemotherapy in gBRCA-mutated advanced BC (27)(28)(29)(30). According to earlier results, the FDA approved olaparib as the Negative Breast Cancer Current subgroup. However, in the interim analysis, no differences in overall survival (OS) were observed between the two Understanding and Future Therapeutic Breakthrough Targeting Cancer Stemmess. Cancers 2019, groups (30)(31)(32). The 3-year OS was 40.8% versus 12.8% in the two groups, respectively, in patients with TNBC. Currently, research on PARP inhibitors for adjuvant therapy and neoadjuvant therapy, as well as for the prevention of bleder by displaying the within a failed blanks of the selection of the selection of the prevention of the selection of the prevention of the description of the selection of the prevention of the selection of the selection of the prevention of the selection of the selection of the selection of the prevention of the selection of the selection of the selection of the selection of the prevention of the selection of the selection of th

- Bre Satheattireir, 何身及过对话语的; albennorcohott@raspiricongMhe Coeokapiss. Philistoriane oplicumate on, edint Praction of with nabspoort and for programmatic per planticum of the coeokapiss. Philistoriane oplicumation oplicumation of the coeokapiss. Philistoriane oplicumation oplicuma
- 10. Gourley, C.; Balmaña, J.; Ledermann, J.A.; Serra, V.; Dent, R.; Loibl, S.; Pujade-Lauraine, E.; Boulton, S.J. Moving From Poly (ADP-Ribose) Polymerase Inhibition to Targeting DNA Repair and DNA Damage Response in Cancer Therapy. J. Clin. Oncol. 2019, 37, 2257–2269.
- 11. van Beek, L.; McClay, É.; Patel, S.; Schimpl, M.; Spagnolo, L.; de Oliveira, T.M. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. Int. J. Mol. Sci. 2021, 22, 5112.
- 12. Langelier, M.-F.; Planck, J.L.; Roy, S.; Pascal, J.M. Structural Basis for DNA Damage-Dependent Poly(ADP-Ribosyl)Ation by Human PARP-1. Science 2012, 336, 728–732.
- 13. Pascal, J.M. The Comings and Goings of PARP-1 in Response to DNA Damage. DNA Repair 2018, 71, 177–182.
- 14. Wang, Y.; Luo, W.; Wang, Y. PARP-1 and Its Associated Nucleases in DNA Damage Response. DNA Repair 2019, 81, 102651.
- 15. Van Andel, L.; Zhang, Z.; Lu, S.; Kansra, V.; Agarwal, S.; Hughes, L.; Tibben, M.M.; Gebretensae, A.; Lucas, L.; Hillebrand, M.J.X.; et al. Human mass balance study and metabolite profiling of 14Cniraparib, a novel poly(ADP-Ribose) polymerase (PARP)-1 and PARP-2 inhibitor, in patients with advanced cancer. Investig. New Drugs 2017, 35, 751–765.
- 16. Fong, P.C.; Boss, D.S.; Yap, T.A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer, P.; Swaisland, H.; Lau, A.; O'Connor, M.J.; et al. Inhibition of Poly(ADP-Ribose) Polymerase in Tumors from BRCA Mutation Carriers. N. Engl. J. Med. 2009, 361, 123–134.
- 17. Virtanen, V.; Paunu, K.; Ahlskog, J.K.; Varnai, R.; Sipeky, C.; Sundvall, M. PARP Inhibitors in Prostate Cancer—The Preclinical Rationale and Current Clinical Development. Genes 2019, 10, 565.
- 18. Dirix, L.; Swaisland, H.; Verheul, H.M.; Rottey, S.; Leunen, K.; Jerusalem, G.; Rolfo, C.; Nielsen, D.; Molife, L.R.; Kristeleit, R.; et al. Effect of itraconazole and rifampin on the pharmacokinetics of olaparib in patients with advanced solid tumors: Results of two phase I open-label studies. Clin. Ther. 2016, 38, 2286–2299.
- 19. Plummer, R.; Swaisland, H.; Leunen, K.; Van Herpen, C.M.L.; Jerusalem, G.; De Greve, J.; Lolkema, M.P.; Soetekouw, P.; Mau-Sørensen, M.; Nielsen, D.; et al. Olaparib tablet formulation: Effect of food on the pharmacokinetics after oral dosing in patients with advanced solid tumours. Cancer Chemother. Pharmacol. 2015, 76, 723–729.
- 20. Mostafa, N.M.; Chiu, Y.L.; Rosen, L.S.; Bessudo, A.; Kovacs, X.; Giranda, V.L. A phase 1 study to evaluate effect of food on veliparib pharmacokinetics and relative bioavailability in subjects with

- solid tumors. Cancer Chemother. Pharmacol. 2014, 74, 583-591.
- 21. Tuli, R.; Shiao, S.L.; Nissen, N.; Tighiouart, M.; Kim, S.; Osipov, A.; Bryant, M.; Ristow, L.; Placencio-Hickok, V.; Hoffman, D.; et al. A Phase 1 Study of Veliparib, a PARP-1/2 Inhibitor, with Gemcitabine and Radiotherapy in Locally Advanced Pancreatic Cancer. EBioMedicine 2019, 40, 375–381.
- 22. Andreidesz, K.; Koszegi, B.; Kovacs, D.; Bagone Vantus, V.; Gallyas, F.; Kovacs, K. Effect of Oxaliplatin, Olaparib and LY294002 in Combination on Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2021, 22, 2056.
- 23. Sari, M.; Saip, P. Myelodysplastic Syndrome after Olaparib Treatment in Heavily Pretreated Ovarian Carcinoma. Am. J. Ther. 2019, 26, e632–e633.
- 24. Murai, J.; Huang, S.-Y.N.; Renaud, A.; Zhang, Y.; Ji, J.; Takeda, S.; Morris, J.; Teicher, B.; Doroshow, J.H.; Pommier, Y. Stereospecific PARP Trapping by BMN 673 and Comparison with Olaparib and Rucaparib. Mol. Cancer Ther. 2014, 13, 433–443.
- 25. Robson, M.; Im, S.-A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533.
- 26. Nicolas, E.; Bertucci, F.; Sabatier, R.; Gonçalves, A. Targeting BRCA Deficiency in Breast Cancer: What are the Clinical Evidences and the Next Perspectives? Cancers 2018, 10, 506.
- 27. Clarke, N.; Wiechno, P.; Alekseev, B.; Sala, N.; Jones, R.; Kocak, I.; Chiuri, V.E.; Jassem, J.; Flechon, A.; Redfern, C.; et al. Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2018, 19, 975–986.
- 28. Robson, M.; Tung, N.; Conte, P.; Im, S.-A.; Senkus, E.; Xu, B.; Masuda, N.; Delaloge, S.; Li, W.; Armstrong, A.; et al. OlympiAD final overall survival and tolerability results: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Ann. Oncol. 2019, 30, 558–566.
- 29. Pujade-Lauraine, E.; Ledermann, J.A.; Selle, F. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, E510.
- 30. Karzai, F.; VanderWeele, D.; Madan, R.A.; Owens, H.; Cordes, L.M.; Hankin, A.; Couvillon, A.; Nichols, E.; Bilusic, M.; Beshiri, M.L.; et al. Activity of durvalumab plus olaparib in metastatic castration-resistant prostate cancer in men with and without DNA damage repair mutations. J. Immunother. Cancer 2018, 6, 141.

- 31. Nitecki, R.; Gockley, A.A.; Floyd, J.L.; Coleman, R.L.; Melamed, A.; Rauh-Hain, J.A. The incidence of myelodysplastic syndrome in patients receiving poly-ADP ribose polymerase inhibitors for treatment of solid tumors: A meta-analysis. J. Clin. Oncol. 2020, 38, 3641.
- 32. Hossain, F.; Majumder, S.; David, J.; Miele, L. Precision Medicine and Triple-Negative Breast Cancer: Current Landscape and Future Directions. Cancers 2021, 13, 3739.
- 33. Bergin, A.R.T.; Loi, S. Triple-negative breast cancer: Recent treatment advances. F1000Research 2019, 8, 1342.
- 34. Pierce, A.; McGowan, P.M.; Cotter, M.; Mullooly, M.; O'Donovan, N.; Rani, S.; O'Driscoll, L.; Crown, J.; Duffy, M.J. Comparative antiproliferative effects of iniparib and olaparib on a panel of triple-negative and non-triple-negative breast cancer cell lines. Cancer Biol. Ther. 2013, 14, 537–545.
- 35. Telli, M.L.; Timms, K.M.; Reid, J.; Hennessy, B.; Mills, G.B.; Jensen, K.C.; Szallasi, Z.; Barry, W.T.; Winer, E.P.; Tung, N.M.; et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin. Cancer Res. 2016, 22, 3764–3773.
- 36. Diéras, V.; Bonnefoi, H.; Alba, E.; Awada, A.; Coudert, B.; Pivot, X.; Gligorov, J.; Jager, A.; Zambelli, S.; Lindeman, G.J.; et al. Iniparib administered weekly or twice-weekly in combination with gemcitabine/carboplatin in patients with metastatic triple-negative breast cancer: A phase II randomized open-label study with pharmacokinetics. Breast Cancer Res. Treat. 2019, 177, 383–393.
- 37. Mateo, J.; Ong, M.; Tan, D.S.; Gonzalez, M.A.; de Bono, J.S. Appraising iniparib, the PARP inhibitor that never was—What must we learn? Nat. Rev. Clin. Oncol. 2013, 10, 688–696.
- 38. O'Shaughnessy, J.; Schwartzberg, L.; Danso, M.A.; Miller, K.D.; Rugo, H.S.; Neubauer, M.; Robert, N.; Hellerstedt, B.; Saleh, M.; Richards, P.; et al. Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triplenegative breast cancer. J. Clin. Oncol. 2014, 32, 3840–3847.
- 39. González-Martín, A.; Pothuri, B.; Vergote, I.; DePont Christensen, R.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2391–2402.
- 40. Sandhu, S.K.; Schelman, W.R.; Wilding, G.; Moreno, V.; Baird, R.D.; Miranda, S.; Hylands, L.; Riisnaes, R.; Forster, M.; Omlin, A.; et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: A phase 1 dose-escalation trial. Lancet Oncol. 2013, 14, 882–892.
- 41. Vinayak, S.; Tolaney, S.M.; Schwartzberg, L.; Mita, M.; McCann, G.; Tan, A.R.; Wahner-Hendrickson, A.E.; Forero, A.; Anders, C.; Wulf, G.M.; et al. Open-label Clinical Trial of Niraparib

- Combined with Pembrolizumab for Treatment of Advanced or Metastatic Triple-Negative Breast Cancer. JAMA Oncol. 2019, 5, 1132–1140.
- 42. Appleman, L.J.; Beumer, J.H.; Jiang, Y.; Lin, Y.; Ding, F.; Puhalla, S.; Swartz, L.; Owonikoko, T.K.; Donald Harvey, R.; Stoller, R.; et al. Phase 1 study of veliparib (ABT-888), a poly (ADP-ribose) polymerase inhibitor, with carboplatin and paclitaxel in advanced solid malignancies. Cancer Chemother. Pharmacol. 2019, 84, 1289–1301.
- 43. Loibl, S.; O'Shaughnessy, J.; Untch, M.; Sikov, W.M.; Rugo, H.S.; McKee, M.D.; Huober, J.; Golshan, M.; von Minckwitz, G.; Maag, D.; et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): A randomised, phase 3 trial. Lancet Oncol. 2018, 19, 497–509.
- 44. Diéras, V.; Han, H.S.; Kaufman, B.; Wildiers, H.; Friedlander, M.; Ayoub, J.-P.; Puhalla, S.L.; Bondarenko, I.; Campone, M.; Jakobsen, E.H.; et al. Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): A randomised, double-blind, placebocontrolled, phase 3 trial. Lancet Oncol. 2020, 21, 1269–1282.
- 45. Han, H.S.; Diéras, V.; Robson, M.; Palácová, M.; Marcom, P.K.; Jager, A.; Bondarenko, I.; Citrin, D.; Campone, M.; Telli, M.L.; et al. Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: Randomized phase II study. Ann. Oncol. 2018, 29, 154–161.
- 46. de Bono, J.; Ramanathan, R.K.; Mina, L.; Chugh, R.; Glaspy, J.; Rafii, S.; Kaye, S.; Sachdev, J.; Heymach, J.; Smith, D.C.; et al. Phase I, Dose-Escalation, Two-Part Trial of the PARP Inhibitor Talazoparib in Patients with Advanced Germline BRCA1/2 Mutations and Selected Sporadic Cancers. Cancer Discov. 2017, 7, 620–629.
- 47. Litton, J.K.; Hurvitz, S.A.; Mina, L.A.; Rugo, H.S.; Lee, K.-H.; Gonçalves, A.; Diab, S.; Woodward, N.; Goodwin, A.; Yerushalmi, R.; et al. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: Final overall survival results from the EMBRACA trial. Ann. Oncol. 2020, 31, 1526–1535.
- 48. Litton, J.K.; Scoggins, M.E.; Hess, K.R.; Adrada, B.E.; Murthy, R.K.; Damodaran, S.; DeSnyder, S.M.; Brewster, A.M.; Barcenas, C.H.; Valero, V.; et al. Neoadjuvant Talazoparib for Patients with Operable Breast Cancer with a Germline BRCA Pathogenic Variant. J. Clin. Oncol. 2020, 38, 388–394.
- 49. Miller, K.; Tong, Y.; Jones, D.R.; Walsh, T.; Danso, M.A.; Ma, C.X.; Silverman, P.; King, M.-C.; Badve, S.S.; Perkins, S.M. Cisplatin with or without rucaparib after preoperative chemotherapy in patients with triple negative breast cancer: Final efficacy results of Hoosier Oncology Group BRE09-146. J. Clin. Oncol. 2015, 33, 1082.
- 50. Drew, Y.; Ledermann, J.; Hall, G.; Rea, D.; Glasspool, R.; Highley, M.; Jayson, G.; Sludden, J.; Murray, J.; Jamieson, D.; et al. Phase 2 multicentre trial investigating intermittent and continuous

- dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br. J. Cancer 2016, 114, 723–730.
- 51. Durmus, S.; Sparidans, R.W.; van Esch, A.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1) restrict oral availability and brain accumulation of the PARP inhibitor rucaparib (AG-014699). Pharm. Res. 2015, 32, 37–46.
- 52. Simmons, A.D.; Nguyen, M.; Pintus, E. Polyclonal BRCA2 mutations following carboplatin treatment confer resistance to the PARP inhibitor rucaparib in a patient with mCRPC: A case report. BMC Cancer 2020, 20, 215.
- 53. FDA. Grants Accelerated Approval to Rucaparib for BRCA-Mutated Metastatic Castration-Resistant Prostate Cancer. Available online: https://www.fda.gov/drugs/fda-grants-accelerated-approval-rucaparib-brca-mutated-metastatic-castration-resistantprostate (accessed on 15 July 2021).

Retrieved from https://encyclopedia.pub/entry/history/show/36827