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Nanofluids are colloidal mixtures of nanosized particles (10–100 nm) suspended in base fluids. They possess good

physical or chemical properties and thermal or rheological properties. Hybrid nanofluids are suspensions of a

mixture of dissimilar nanoparticles or nanocomposites infused in the conventional base fluid, which yield better

thermal conductivity and heat transfer characteristics due to hybridization.

nanofluids  heat transfer rate  Prandtl number  pressure drop

1. Hybrid Nanofluids

Industries with cooling solution requirements have focused on the use of modified fluids with various additives  to

obtain improved thermal properties. Nanofluids are colloidal mixtures of nanosized particles (10–100 nm)

suspended in base fluids . They possess good physical or chemical properties and thermal or rheological

properties . Hybrid nanofluids are suspensions of a mixture of dissimilar nanoparticles or nanocomposites

infused in the conventional base fluid, which yield better thermal conductivity and heat transfer characteristics due

to hybridization . They are used in phase change materials, heat exchangers, solar energy, electronics,

agriculture, chemical, manufacturing, and automobile industries . The two-step

method is used for preparing hybrid nanofluids. Different nanoparticles are prepared and mixed in the primary

liquid through magnetic or mechanical stirring. The solution is sonicated and characterized to ensure stable and

homogeneous mixing, providing improved heat transfer characteristics . Enhanced heat transfer is due to

increased surface area, collision, interactive effect, and proper mixing of nanoparticles in base fluids (causing micro

turbulences). Hybrid nanofluids play four roles (used as refrigerant, lubricant, absorbent, and secondary refrigerant)

in improving the thermal system performance in low-temperature applications. The effects of nanoparticle

concentration and size on the performance of water-based CuO nanofluids were investigated in . The synthesis,

stability, and thermo-physical properties of hybrid nanofluids were studied in . Zaynon and Azmi  presented

the influence of nanoparticle type, concentration, temperature, shape, and size on the nanofluid properties. The

amount of grapheme required in the base fluid to improve thermal performance was suggested in .

2. Preparation of Mono/Hybrid Nanofluids

[1]

[2]

[3][4]

[5]

[6][7][8][9][10][11][12][13][14][15][16][17][18][19]

[20]

[21]

[22] [23]

[24]



Mono and Hybrid Nanofluids' Preparation, Characterization and Stability | Encyclopedia.pub

https://encyclopedia.pub/entry/43133 2/21

Nanofluids are organized according to their preparation using one- or two-step methods (Figure 1). In a one-step

approach, nanoparticles are prepared and mixed directly in a base fluid using physical or chemical processes. In

the two-step method, nanoparticles are obtained using physical or chemical methods and then effectively infused in

an essential base liquid . Several investigators have reviewed the preparation of different mono/hybrid

nanofluids based on various base fluids . Spherical ZnO particles were synthesized

using a sol–gel annealing process at 500–600 °C in . The ball milling process was used to grind aluminum

nitride carbon nanocomposite (a nontoxic ceramic) for heat transfer experiments . Making nanofluids through a

single-step method is expensive and time-consuming. The control of particle agglomeration is the primary problem

in the two-step method. Ultrasonication minimizes nanoparticle sedimentation and improves nanofluid stability .

Due to simplicity, 95% of researchers used a two-step method when preparing nanofluids (see Table 1).

Figure 1. Flowchart for producing hybrid nanofluids .

Table 1. Examples of hybrid nanofluids adopting two-step preparation.
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Author(s) Nanoparticle Base Fluid

Jana et al. Au–CNT, Cu–CNT Water

Han et al. Sphere–CNT Oil

Turcu et al. Fe O –polypyrrole Water

Jha and Ramaprabhu Cu–MWCNT Water/EG
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Author(s) Nanoparticle Base Fluid

Han and Rhi Ag–Al O Water

Baby and Sundara CuO–HEG Water/EG

Paul et al. Al–Zn EG

Suresh et al. Al O –Cu Water

Botha et al.  * Ag–SiO Oil

Ho et al. Al O –PCM Water

Baby and Sundara Ag–HEG Water/EG

Amiri et al. Ag–MWCNT Water

Chen et al. Ag–MWCNT Water

Aravind and Ramaprabhu Graphene–MWCNT Water and EG

Bhosale and Borse Al O –CuO Water

Balla et al. CuO–Cu Water

Abbasi et al. ϒ-Al O –MWCNT Water

Nine et al. Cu–Cu O Water

Munkhbayar et al.  * Ag–MWCNT Water

Sundar et al. Nanodiamond–nickel Water/EG

Parameshwaran et al. Ag–TiO PCM

Batmunkh et al. Ag–TiO Water

Madhesh et al. Cu–TiO Water

Chen et al. MWCNT–Fe O Water

Parekh Mn Zn Fe O Oil

Luo et al. Al O –TiO Lubricating oil

Madhesh and Kalaiselvam Cu–TiO Water

Zubir et al. Graphene oxide–CNT Water

Qadri et al. Graphene–Cu O Water/EG
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* Single-step method.

Jana et al.  infused various volume fractions of CNTs in water to obtain CNT suspensions. Au nanoparticles

were suspended with CNT in varying volume fractions to obtain CNT–Au suspensions. The hybrid suspension was

sonicated for 1 h using an ultrasonic cleaner to get an adequately dispersed solution. Bhosale and Borse 

prepared a hybrid nanofluid (Al O –CuO water) by mixing 2.5 mg of CuO and Al O  in distilled water. Later, the

concentration was varied to 0.25%, 0.5%, and 1.0% volume. Toghraie et al.  prepared ZnO–TiO /EG hybrid

nanofluids by dispersing equal volumes of ZnO and titanium dioxide (TiO ) nanoparticles in a given amount of pure

EG as a base liquid. The stability of the prepared nanofluid was confirmed, ensuring no sedimentation. Paul et al.

 synthesized Al–Zn nanoparticles by stirring. They prepared hybrid nanofluids through a two-step process. Al–Zn

nanoparticles were added to ethylene glycol (base fluid), followed by sonication and magnetic stirring. Suresh et al.

 obtained a hybrid powder of alumina–copper using a thermochemical method, including spray-drying, oxidation

of the precursor powder, hydrogen reduction, and homogenization. They used different volume fractions (0.1%,

Author(s) Nanoparticle Base Fluid

Karimi et al. NiFe O Water

Chakraborty et al. Cu–Al Water

Megatif et al. CNT–TiO Water

Abbasi et al. MWCNT–TiO Water

Toghraie et al. ZnO–TiO EG

Bhanvase et al. PANI–CuO Water

Asadi et al. CuO–TiO Water

Chen et al. Al O Liquid paraffin

Asadi et al. MWCNT Water

Gulzar et al. Al O –TiO Therminol-55

Alarifi et al. MWCNT–TiO Oil

Akram et al. CGNP DI Water

Sharafeldin and Grof WO Water

Chen et al. MWCNT Water

Ali et al. Al Water

Mahbubul et al. Al O Water

Mahyari et al. GO–SiC Water/EG

Chen et al. Fe O –MWCNT Brine water

Okonkwo et al. Al O –Fe Water

Terueal et al. MoSe Water

Li et al. SiO Liquid paraffin

Geng et al. ZnO–MWCNT Oil

Li et al. SiO EG
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0.33%, 0.75%, 1.0%, and 2.0%). Baby and Sundara  used a hydrogen-induced exfoliation and chemical

reduction process of graphite oxide (GO) to synthesize grapheme decorated with CuO (CuO/HEG). The HEG

obtained was functionalized by acid treatment and coated with CuO nanoparticles. CuO/HEG was dispersed in the

base liquid (water/EG) by ultrasonication. Nine et al.  reported an economical and beneficial process for

synthesizing Cu O and Cu/Cu O nanoparticles with a mean size of less than 30 nm. A ball milling process was

used to synthesize Cu/Cu O–water hybrid nanofluids. Madhesh et al.  prepared a copper–titania hybrid

nanofluid by uniformly dispersing an aqueous solution of titania (5 g) and copper acetate (0.5 g) in an ultrasonic

vibrator for 2 h using reducing agents at 45 °C and atmospheric pressure. A one-step method was described for a

hybrid nanofluid containing silver and silica nanoparticles by Botha et al. . Ho et al.  prepared phase change

material (PCM) suspensions using interfacial poly-condensation and emulsion techniques. Nanofluid Al O –water

was obtained by adding Al O  nanoparticles in water (base liquid). Chen et al.  prepared Ag/MWCNT

nanocomposites using the silver mirror reaction. Functionalized MWCNTs were used to fabricate Ag/MWCNT

nanocomposites using sodium dodecyl sulfate (SDS) as a surfactant and formaldehyde as a reducing agent.

3. Characterization and Stability of Mono/Hybrid Nanofluids

Several forces, such as van der Waals attraction, buoyancy, gravity, and electrostatic repulsion, cause

destabilization and sediment formation. Van der Waals attraction and gravity decrease the stability of colloidal

suspensions. Stability is a critical factor in the effectiveness of nanofluids for technological applications. All thermo-

physical properties of nanofluids depend on their stability. The instability of nanofluids can reduce their

effectiveness in many heat transfer applications. It is caused by the tendency of nanoparticles to form clusters in

liquids. An SEM image of the Al O –MWCNT/water hybrid nanofluid is shown in Figure 2 .
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Figure 2. SEM image of Al O –MWCNT/water hybrid nanofluid .

The particle aggregation causes the separation of nanoparticles from base fluids and forms sedimentation . The

coagulation rate is determined from the collision frequency of particles in Brownian motion and cohesion probability

. Removal of agglomeration propensity yields stable nanofluids. Methods adopted for assessing the stability of

nanofluids are the sedimentation method, spectral absorbance, centrifugation method, transmittance

measurement, zeta potential measurement, and dynamic light scattering . For long-term stable and

homogenous nanofluids, the following surfactants can be added : anionic (sodium dodecyl sulfate and

sodium dodecyl benzene sulfonate), cationic (cetyl trimethyl ammonium bromide), nonionic (Span-80 and Tween-

20), and polymer (polyvinyl pyrrolidone, polyvinyl alcohol, and gum Arabic). Surfactants improve the wettability of

the nanoparticles and the base fluids by reducing the base fluid’s surface tension and improving the nanoparticles’

dispersibility .

Ultrasonic mills, baths, stirrers, and high-pressure homogenizers are used for the dispersion of nanoparticles. Baby

and Sundara  used an economical method to synthesize hydrogen-functionalized, exfoliation-induced silver-

decorated graphene (Ag/HEG) and prepared nanofluids. Ag/HEG was distributed in a mixture of deionized

water/ethylene glycol using ultrasonic agitation without surfactant. The hybrid nanofluid was observed to be stable

for more than 3 months. Aravind and Ramaprabhu  prepared MWCNT nanocomposites with graphene shells

and synthesized them by chemical vapor deposition. The prepared hybrid nanofluid was stable for an extended

period. Megatif et al.  prepared a CNT–TiO  hybrid nanocomposite and dispersed it in water to obtain a hybrid
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nanofluid. The surfactant SDBS was added to the suspension for proper dispersion. They sonicated the solution for

15 min and tested its stability. The solution was stable for 2 days.

Although most (95%) of the researchers adhered to the two-step method, nanofluids synthesized by the expensive

and complex one-step method improve the stability of nanoparticle suspensions in base oils due to high

sedimentation rates with short sonication times . Ultrasonication lessens the sedimentation of nanoparticles,

resulting in enhanced nanofluid stability. A better understanding of the mechanisms of nanofluids at the atomic level

is required to address particle transport, aggregation, and stability issues with minimal experimentation.

No sophisticated equipment is required to produce nanofluids using a simple two-step method. Dispersion of

nanoparticles requires sonication times of 3–10 h . Amin et al.  critically reviewed the properties of single

and hybrid nanofluids based on organic and synthetic materials. Malika and Sonavan  used a two-step method

to prepare CuO–ZnO/water hybrid nanofluids. Ultrasonication provided nanofluid stability. FESEM/EDS, dynamic

light scattering, and zeta potential measurements provide insight into nanoparticle morphology, shape, and size.

The stability of Al O –CuO/(50/50) EG/W (ethylene glycol/water) hybrid nanofluids at 60 °C was confirmed by zeta

potential measurements .

The stability of trihybrid nanofluids was tested by mixing three types of nanoparticles (i.e., Al O , TiO , and SiO

with volume concentrations of 0.05–0.3%) in a water/ethylene glycol-based fluid  and a recommended

sonication time of 10 h at a zeta potential of 25.1 mV. To improve the stability of nanofluids, Afshari et al. 

highlighted properties such as the acidity degree of the nanofluid, ultrasonication, nanoparticle material, base fluid

type, nanoparticle concentration, surfactants, and surface modification of nanoparticles. Arora and Gupta 

reviewed stability evaluation techniques (spectral absorbance, sedimentation, zeta-potential, and electron

microscopy) and enhancement techniques (ultrasonication, surfactant addition, particle surface modifications, and

pH change). Future research should focus on industrial applications to minimize pressure losses, the concentration

of nanoparticles, and the long-term stability of hybrid nanofluids.

The stability characteristics of mono and hybrid nanofluids have been studied using zeta potential measurements

and vibrating sample magnetometry (VSM) analysis . To maintain nanofluid stability, Zainon and Azmi 

recommend analysis by sonication, pH modification, surfactant, TEM, field emission scanning electron microscopy

(FESEM), XRD, zeta potential, and UV/visible spectroscopy techniques. Bumataria et al.  used single and

hybrid nanofluids to study heat transfer consider in heat pipe technologies. The use of dispersing agents and

sonication increases the stability of nanofluids . Excellent suspension stability could be obtained by adding

small amounts of SDBS and PEG to DW (hybrid nanofluid 25% Al O  + 75% TiO ) . The hybrid nanofluid’s

stability was high, as the zeta potential value (i.e., the electrostatic repulsive force between the nanoparticle and

the base fluid) was 42.6 mV compared to the reference value of 30 mV. Said et al.  investigated the stability of

carbon nanofibers (CNF), functionalized carbon nanofibers (F-CNF), reduced graphene oxide (rGO), and F-

CNF/rGO nanofluids. Hybrid nanofluids (FCNF/rGO) showed higher stability than CNF, F-CNF, and rGO nanofluids.
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Muthoka et al.  investigated the stability of hybrid nanofluids with two nanoparticles in PCM/DI water. The

stability of surfactant-free MgO and 24 wt.% primary liquid was poor after 24 h, whereas the functionalized

MWCNT solution showed no separation after 24 h. It was confirmed that the nanofluid’s low-temperature stability

was increased using a surfactant. Acid treatment with CNF was used to test stability . The zeta potential of 0.02

vol.% F–CNF nanofluids measured after 2 and 90 days was −42.9 and −41.8 mV, indicating improved stability

compared to the −16.3 and −15.5 mV UNV zeta potentials, which were characterized by relatively unstable

dispersion. Alawi et al.  synthesized aqueous nanofluids PEG–GnP, PEG–TGr, Al O , and SiO . The dispersion

stability of the carbon-based nanofluid and the metal oxide nanofluid was observed for 30 days, and the high

dispersibility of PEG–HNP and PEG–TGr in an aqueous medium with low sedimentation was confirmed. Compared

to GnP/DW nanofluids, TiO /DW nanofluids showed superior stability . The addition of CTAB surfactant showed

excellent stability of ternary hybrid nanofluids . Uysal  used a 500 rpm homogenizer to mix and stabilize

nano-graphene in vegetable oil. Al-Waeli et al.  demonstrated high nanofluid stability (over 80 days) with CTAB

and tannic acid + ammonia solution. The stability of Al O /water nanofluids using CTAB and SDBS surfactants was

investigated for various pH values . Kazemi et al.  visually observed the stability of SiO /water and G/water

nanofluids. SiO /water nanofluids were found stable at all pH values (see Table 2 for the stability of various

nanofluids).

Table 2. Stability of different nanofluids with surfactants.
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Author(s) Nanoparticle Base Fluid Surfactant (s)

Xian et al. COOH-GnP, TiO DW/EG SDC, CTAB *, SDBS

Almanassra et al. CNT Water GA *, PVP, SDS

Cacua et al. Al O Water CTAB, SDBS *

Kazemi et al. SiO , graphene Water CMC *

Ouikhalfan et al. TiO DW CTAB *, SDS

Siddiqui et al. Cu-Al O DI water  

Cacua et al. Al O DI water CTAB, SDBS *

Etedali et al. SiO DI water CTAB *, SLS *

Giwa et al. Al O -Fe O DW SDS *, NaDBS *

Kazemi et al. G-SiO DW CMC *

Gallego et al. Al O Water SDBS *

Shah et al. (rGO) EG CTAB *, SDBS, and SDS

Ilyas et al. GnP Saline water SDS *
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* Recommended surfactant for improved stability of hybrid nanofluids.Brownian motion of nanoparticles, micro-convection, clustering, and pH value strongly affect the thermal properties

of hybrid nanofluids . Solidification and clustering of nanocomposites of different sizes in nanofluids affect their

thermal properties . The stabilization and evaporation of single and hybrid nanofluids have been studied in

specific systems from a statistical point of view . Bhattad et al.  investigated with Al O  - TiO  - water

hybrid solution. Commercially purchased nanoparticles were mixed with the primary fluid (DI Water) using a

mechanical stirrer followed by ultrasonication. Afterward, the solution was characterized to verify the shape, size,

proper mixing and stability. 

SEM (Scanning electron microscopy) and TEM (Transmission electron microscopy) tests were performed and

measured the mean size of Al O  and TiO  nanoparticles by ImageJ 2.0.0-rc-3 as 45 nm and 20 nm, respectively.

The small-size particles in Figure 3 represent TiO  nanoparticles, whereas larger ones are the Al O  nanoparticles.

Both types of nanoparticles were found to be spherical, with a shape factor of 1. One of the key challenges in

studying nanofluids is ensuring their stability and homogeneity. A stability test involving gravitational settling was

performed to address this issue, and images of the test tube were taken at different intervals (Figure 4). The

results showed that there was no sedimentation throughout the 7-day investigation.

(a)

(b)

Figure 3. (a). SEM image of Al O - TiO /water hybrid nanofluid; (b). TEM image of Al O - TiO /water hybrid

nanofluid.
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Figure 4. Stability analysis of a sample showing no sedimentation for 7 days.
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