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Accurate detection and delineation of individual trees and their crowns in dense forest environments are essential

for forest management and ecological applications. This research explores the potential of combining leaf-off and

leaf-on structure from motion (SfM) data products from unoccupied aerial vehicles (UAVs) equipped with RGB

cameras.
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1. UAV Imagery Processing Using Structure from Motion

One of the great advantages of UAV data is their ability to generate 3D information, such as 3D point clouds, from

2D drone imagery applying photogrammetric processing steps, commonly known as structure from motion (SfM)

. During data acquisition, highly overlapping images are captured, providing different perspectives on the same

ground spots. Prominent feature points are extracted from each image, and features corresponding to the same 3D

point are matched in the overlapping regions of different images. Aerial triangulation, such as bundle adjustment, is

then applied to define camera positions and orientations, as well as to obtain 3D geometry, creating tracks from a

set of matched features. Based on these estimated camera and image positions, densification algorithms (dense

stereo matching) can be used to generate dense 3D point clouds. From the point cloud, a digital surface model

(DSM) can be derived and, by projecting the single images using the DSM, an orthomosaic can be generated .

These data products can be further used to extract specific forest parameters. The UAV-SfM approach has the

potential to provide both geometric and spectral datasets, serving as input data for various forest parameter

extraction algorithms. While methods integrating geometrical point and spectral image data are increasingly used

in the field of forestry, most studies rely on LiDAR data rather than on UAV-SfM point clouds .

2. UAV-Data-Based Products for Tree Crown Delineation

In order to analyze tree parameters on an individual tree level within a forest stand, it is necessary to first segment

single trees. This involves delineating the projected tree crown, which can be identified in the orthomosaic or height

models, as separate objects. This individual tree crown delineation (ITCD) serves as the foundation for various

subsequent analysis steps, including tree species classification, environmental and forest monitoring at the tree
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level, and the extraction of individual tree parameters directly from remote sensing data . Over the past few

decades, numerous ITCD methods have developed, based on generalized characteristics of trees or forests. Most

of these methods can be applied to either 2D raster such as orthomosaic, 2.5D raster such as canopy height

models (CHMs), or 3D data products such as point clouds. However, there are certain methods that specifically

rely on 3D data and cannot be used when only 2D data are available. These methods often originate from the field

of laser scanning and are increasingly being tested for point clouds derived from SfM as well .

Most methods typically assume a similar—hemispherical to conical—tree shape, with one tree top located at the

center of the crown. Due to its exposed position, the top of the tree receives the highest solar radiation, resulting in

the highest intensity and brightness values . Algorithms are expected to yield better results for forests with a

sparse canopy, lower species diversity, and similar age structure. These characteristics are more commonly found

in managed forests and in coniferous, savannas, or tundra forest systems .

The analysis is often divided into two parts: tree detection, which involves identifying the position of a tree trunk,

and delineating the (entire) tree crown . In the following, some of the more commonly used methods for tree

detection and delineation will be presented.

Local maxima and region growing: This method builds upon the previously mentioned canopy characteristics.

Initially, individual trees are detected by identifying local maxima, which ideally represent tree midpoints. These

maxima can be based on both CHM values and brightness values . Difficulties may arise when defining the

search radius for local maxima, which is derived from pixel size and average crown diameter and due to the fact

that, in reality, tree crowns are not symmetrically aligned around a central point. Smoothing filters can reduce

unwanted noise within the maxima . Wulder et al.  propose using varying local maxima search radii,

each based on the semivariance of the pixel.

Starting from these initial seed points, neighboring pixels or objects that exhibit similarity are added to the crown

objects until a termination criterion is met, indicating that the crown has been delineated. This process is known as

region growing .

Valley-following approach: The valley-following approach, initially introduced by Gougeon , consists of two parts.

The first part involves classifying the areas between the individual tree canopies, while the second part utilizes a

rule-based method to refine these classified areas . These intermediate areas are referred to as valleys. They

are characterized by higher shading, resulting in lower intensity and brightness values compared to the

surrounding areas or represent local minima values . According to Ke and Quackenbush  and Workie ,

relying solely on this shade-following approach often leads to incomplete separation of individual trees because,

depending on tree density, not all crowns are adequately separated from each other by “valleys”.

Watershed segmentation: The watershed segmentation, first described by Beucher and Lantuéjoul , is a form of

image processing segmentation. It also draws upon the topological analogy of the canopy described earlier. In this

method, the values of a gray-scale layer are inverted and “flooded”, starting from local minima (tree tops). The
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resulting individual watersheds are separated from each other by dams, creating distinct segments . Markers

can be used in this process, representing the local minima from which the “flooding” originates, ideally representing

tree tops. The resulting segments are supposed to delimit the individual tree tops . According to Derivaux et al.

, a common challenge in this method is over-segmentation, which can be mitigated through targeted marker

placement, application of smoothing filters, or through the combined use with region-merging techniques and other

methods.

Template matching: Template matching is a method that can be employed to detect individual tree crowns when

the tree crowns exhibit similar shapes and comparable spectral values. Templates are created based on a gray

value layer, representing patterns of typical tree shapes and values, mostly averaged. Both radiometric and

geometric properties of the crown are utilized, and different viewing angles can be considered. The template is

compared to all possible tree points, with high correlation values above a defined threshold representing individual

trees .

Deep learning methods: Deep learning methods, such as instance segmentation, are increasingly being utilized for

the detection and delineation of single tree crowns . Commonly used model architectures are Mask R-CNN ,

artificial neural networks , or U-nets . These methods offer advantages such as the ability to use multi-band

images as input, instead of relying solely on a single band, and a focus on textural features, which is beneficial as

adjacent trees might have very similar spectral properties. However, a disadvantage is the need for training data,

which are typically obtained through time-consuming manual crown delineation and/or field work.

Point cloud-based methods: Terrestrial/airborne laser scanning and UAV-SfM provide 3D point cloud data that can

be directly used for the single crown delineation. Most studies focusing on 3D methods utilize LiDAR data, as UAV-

SfM does not penetrate dense crown structures well, especially during leaf-on season. As a result, UAV-SfM leaf-

on point clouds tend to be less dense for lower canopy and forest floor areas. Various point-cloud-based

approaches have been applied for ITCD, including K-means clustering , template matching , voxel space

approaches , and mean-shift segmentation . Deep learning models are trained using reference point clouds

and have been used to segment single trees , employing frameworks such as PointNet .

Several recent studies applied one or multiple of the above-mentioned methods to detect tree positions and

perform crown delineation using UAV-based imagery data products. A selection of relevant studies is presented in

Table 1.

Table 1. Selection of recent studies on tree detection and crown delineation in forest ecosystems using UAV optical

data.
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PaperForest
Characteristics

UAV Imagery
Type

Camera
Angle

Tree Detection
Algorithm

Crown
Delineation
Algorithm

Description

Dry conifer
forest, low tree

DJI Phantom
4 Pro (RGB)

Nadir &
oblique

Local maxima
on CHM

- Various flight
altitudes,
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PaperForest
Characteristics

UAV Imagery
Type

Camera
Angle

Tree Detection
Algorithm

Crown
Delineation
Algorithm

Description

density patterns, and
camera angles
were tested, and
better accuracy
values were
achieved by
combining
crosshatch flight
patterns with
nadir camera
angles. The
maximum F-
score values
ranged between
0.429 and 0.771.

Broadleaf
forest, test
sites with
different stand
densities

DJI Phantom
4 Pro (RGB)

Nadir
Local maxima
on CHM

Region
growing +
inverse
watershed
segmentation

The highest
overall accuracy
(F-score = 0.79)
was obtained for
the low-density
stand by
applying a region
growing
algorithm on the
CHM. Accuracy
also varied
among different
tree species,
with the best
results obtained
for Caspian
poplar and the
lowest for
Persian
ironwood. In
high-density
stands, the
crown
delineation
results could be
improved by
applying weak
gaussian filtering
to the CHM.

Mixed conifer
forest, open
canopy

DJI Phantom
3 (RGB)

Nadir Local maxima
on CHM

- Fixed window
sizes were used
in the local
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PaperForest
Characteristics

UAV Imagery
Type

Camera
Angle

Tree Detection
Algorithm

Crown
Delineation
Algorithm

Description

maxima filter,
and it was
observed that
accuracy
decreased as the
filter sizes
exceeded 1 × 1
m. Challenges in
tree detection
were specifically
noted in steep
areas and
regions with high
canopy closure.
DTMs obtained
through SfM
tended to
overestimate
height in dense
vegetation in
comparison to
DTMs derived
from airborne
laser scanning.

Mixed-conifer
forest,
moderate
density

DJI Phantom
4 (RGB)

Nadir,
oblique &
composite

Variable
window filter
(VWF),
3D point cloud-
based
algorithms

- Different flight
parameters
(altitude, camera
angle, and image
overlap), SfM
processing
settings (depth
filtering,
alignment, and
dense cloud
quality), and tree
detection
algorithms (CHM
smoothing, VWF
parameters, and
point-cloud-
based methods)
were
investigated.
Higher
accuracies were
achieved at high
flight altitudes
(120 m) and with
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PaperForest
Characteristics

UAV Imagery
Type

Camera
Angle

Tree Detection
Algorithm

Crown
Delineation
Algorithm

Description

high image
overlap (90%).
The combination
of nadir and
oblique imagery
resulted in
detection rates
worse than using
only nadir data.
CHM-based
VWF methods
produced the
most accurate
results, with F-
scores up to
0.664 (trees > 10
m) and 0.826
(trees > 20 m).

Pine tree
plantations

DJI Mavic Pro
(RGB)

Oblique
Local maxima
on CHM

-

Prior to tree
detection using
local maxima,
the CHM was
mean-filtered
with a user-
defined filter
size. Accuracy of
up to 0.78 (F-
score) was
achieved.

Spruce-pine
forest

DJI Phantom
4 Pro, Parrot
Disco-Pro Ag
& DJI Matrice
210 (RGB &
multispectral)

Nadir Local maxima
on CHM

Watershed
segmentation

Using consumer-
grade cameras
yielded higher
tree detection
rates and more
accurate crown
diameters
compared to
multispectral
cameras.
Cameras with
higher spatial
resolution
performed better
at higher flight
altitudes,
whereas the
opposite was
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PaperForest
Characteristics

UAV Imagery
Type

Camera
Angle

Tree Detection
Algorithm

Crown
Delineation
Algorithm

Description

observed for
cameras with
lower resolution.
The best results
were achieved
with the DJI
Phantom 4 RGB
drone, detecting
84% of the trees
correctly. The
mean absolute
error of crown
diameters
derived was
0.79–0.99 m
(Phantom 4,
RGB) and 0.88–
1.16 m
(Zenmuse X5S).

Mixed conifer
forest, open
canopy

DJI Phantom
3 (RGB)

Nadir
Local maxima
on CHM

-

Different window
sizes for local
maxima
detection were
tested, and the
performance of
smoothed and
non-smoothed
CHM was
compared.
Lower window
sizes for local
maxima and
smoothing
proved to be
more successful
in detecting
trees. The
overall F-score
value was 0.86.

Forest
plantations,
high canopy
density

DJI M600 Pro
(5-lens
oblique)

Oblique Adaptive-/fixed-
kernel
bandwidth
mean-shift
(AMS/FMS),
region growing
on CHM

AMS, FMS,
region
growing on
CHM

Kernel
bandwidth was
defined based on
canopy
properties and
applied to the
mean-shift tree
detection and
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As emphasized by several of these studies, detection and delineation of tree crowns in complex forest structures

with dense canopy closure and overlapping tree crowns remains challenging . Some studies focus on ITCD in

forest with low to moderate canopy closure or open forest stands , as well as on forest plantations

characterized by a more regular tree spacing and structure . These types of forest tend to facilitate the

detection of crown boundaries and the number of trees, as most algorithms perform better in homogeneous forest

stands with lower canopy closure .

PaperForest
Characteristics

UAV Imagery
Type

Camera
Angle

Tree Detection
Algorithm

Crown
Delineation
Algorithm

Description

delineation
algorithm. The
AMS method
outperformed
FMS and seed-
based region
growing
methods,
achieving an
overall accuracy
of ≥0.72 for tree
detection and a
relative RMSE of
≤0.13 for crown
width.

Orchard
yard/naturally
wooded
pasture/urban
trees, low tree
density

DJI Phantom
4 (RGB)

 

Single shot detector (SSD) deep
learning model on raster data
(returning bounding boxes
around tree position)

Several
additional
datasets were
derived from the
RGB and DSM
and were used
for training
purpose. SSD
was used for tree
detection and
species
classification.
Ensembled
models with
different input
datasets
generally
demonstrated
higher
performance
compared to
models based on
only one type of
input data.

Conifer and
mixed
regenerating
forest stands,
low tree
density

DJI Phantom
4 Pro (RGB)

Nadir - Mask R-CNN
on raster data

Mask R-CNN
were trained
using manually
delineated
crowns;
pretrained
networks were
also
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Angle

Tree Detection
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Crown
Delineation
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incorporated. An
average F1-
score of 0.91
was achieved.
ITCD remained
more challenging
for
heterogeneous
and denser
forest stands, as
well as for
smaller crowns.

Conifer
plantation,
moderate tree
densities

DJI Phantom
4
(multispectral)

 
Local maxima
on RGB and
CHM

Marker-
controlled
watershed
segmentation,
Mask R-CNN
on raster data

The performance
of local maxima,
marker-
controlled
watershed
segmentation
and Mask R-
CNN were
compared. Local
maxima and
watershed
algorithms
scored the best
results when
applied to the
CHM. Overall,
Mask R-CNN
outperformed the
classic
algorithms.

Subtropical
broadleaf
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DJI Matrice
600 (RGB &
hyperspectral)

 - Watershed-
spectral-
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controlled
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cut
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considering both
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