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Smart manufacturing is not only beneficial to optimize product manufacturing processes with minimum costs, but also
conducts product life cycle management to reduce energy consumption. Sustainable and smart manufacturing involves
improving the efficiency and environmental sustainability of various manufacturing operations such as resource allocation,
data collecting and monitoring, and process control.
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| 1. Introduction

Since the concept of Industry 4.0 was proposed, manufacturers have actively introduced the latest technologies such as
the Internet of Things (loT), artificial intelligence (Al), big data, machine learning, blockchain, edge computing, 5G, drone
applications, AR/VR, and cyber-physical systems into manufacturing processes and operations . Smart manufacturing is
not only beneficial to optimize product manufacturing processes with minimum costs, but also conducts product life cycle
management to reduce energy consumption [&. In smart manufacturing, the 10T collects data, including the input/output
data and parameters (or recipes) for manufacturing equipment, workforce-related data, and work environmental
conditions. Then, based on the data, the Al and optimization techniques are further developed to provide intelligent
decisions and actions to improve the manufacturing processes and operations while optimizing some objectives, e.g.,
minimizing production costs and energy consumption. Recently, manufacturers have paid increasing attention to
achieving net zero carbon emissions by 2050. Under uncertain energy demand, manufacturers control intermittent energy
generation and usage time, as well as long-term operation planning, and must develop economical designs and smart
resource utilization of micro-grids to achieve net-zero energy operations [El. Therefore, there is of urgent need for
manufacturers to effectively implement manufacturing resource allocation (including energy data and equipment
resources), manufacturing data monitoring (including big data collection and analysis), and manufacturing process control
(including energy usage and cost control) to achieve the goal of sustainable and smart manufacturing.

There are requirements for continuously developing novel technologies and sustainable environments, therefore,
manufacturers rely increasingly on electricity and require a smart, efficient, and reliable energy management system. As a
solution, the smart grid (SG) replaces the existing electrical grid to effectively adjust and distribute energy according to
demand ¥l. Generally, the SG is integrated with renewable energy (e.g., solar, wind, and geothermal energy) to provide
clean, sustainable, efficient, and reliable energy sources, allowing manufacturers to have better choices for energy
planning in manufacturing processes. As shown in Figure 1, the SG provides a platform for energy supply using the latest
technologies (including communication technologies, information provision, cybersecurity, and computational intelligence)
to demonstrate various characteristics, including self-healing, flexibility, prediction, interaction, optimization, and security
4 The application areas of SG have existed not only in life, but also widely in different industries. Dileep & investigated
SG technologies and their applications that provide two-way power systems in industrial applications, electric vehicles,
home buildings, intelligent electronic devices, and local area networks. Babayomi et al. ¢ reviewed distributed energy
resources applications as well as control prediction in wind energy conversion systems, solar photovoltaics, fuel cells, and
energy storage systems. Bhattarai et al. [ provide an energy transformation solution of SG for various industries for
strengthening the power system, integrating renewable sources, electrifying the transport sector, and harnessing
bioenergy.
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However, as the power market has become increasingly free and open, more diversified energy sources are integrated
into the SG, which increases the complexity of transmitting and distributing energy. Over time, such an increasing
interconnection scale makes the SG system more complex than the previous systems. Therefore, it has been important
and unavoidable to investigate how to maintain a stable energy supply through the SG system. Recently, the applications
of Al technologies have been used to analyze and control the stability of the SG and provide effective smart solutions for
complex systems, and they have received enormous attention €. The recent applications of Al technologies in power
systems have mainly included fault detection and diagnosis, energy planning, energy forecasting, and power system
optimization (e.g., economic scheduling, power optimization process and problem formulation, optimization of neural
network applications, and reactive power optimization) &.

| 2. Overview of SG Operations for Smart Manufacturing
2.1. Distribution Side Management through SGs

The centralized power generation and one-way power distribution of conventional electrical grids cause problems of
excessive energy loss and uneven distribution. The SG makes the controlled electrical network more automated and more
effective by installing smart measures and monitoring equipment so as to achieve more efficient, reliable, and
environmentally friendly electricity distribution. Recent instances on the distribution side management of electrical grids
through SGs are reviewed as follows. Xia et al. 2% proposed a cyclic neural network with stacked gated cyclic units for
single-variable and multi-variable actual situations to effectively control and manage the grid. For smart power control and
saving, Khalid et al. 1 proposed a multivariate neural network model for demand forecasting and electricity price
estimation, and showed that their overall accuracy was higher than other univariate forecasting methods. To effectively
control electricity demand, Avancini et al. 12 installed smart meters to provide measurement, communication, control,
display, and synchronization functions, and established a smart energy network that can be effectively managed. To
effectively reduce energy demand and carbon emissions, Jaiswal and Thakre 23! adopted the control and management of
smart meters in the SG based on detailed electricity consumption and price information to plan the energy use. Yang et al.
[14] established an energy-saving and reliable SG by installing smart meters in the power system, analyzing the actual
power consumption data, and introducing probabilistic load forecasting to better control the uncertainty and volatility of
future demand. Shi et al. 12 considered a complex SG system integrated with solar power and renewable energy and
provided an Al solution for the stability analysis and control of solar power generation.

2.2. Demand Side Management through SGs

With a limited power supply, the demand side uses SG technologies to calculate, manage, and allocate power usage for
various manufacturing and operational needs. The previous works on demand side management strategies are reviewed
below. Bagdadee et al. 18 combined the intelligent industrial power framework with manufacturing machines to collect
their power consumption data, and carried out demand management according to the actual needs of consumers.
Bahaghighat et al. 7 proposed machine learning algorithms and visual sensor network approaches to forecast wind
power generation in SGs to improve their performance and efficiency. When facing the demand of dynamic power
changes, under the SG following the cyber-physical system model, Alazab et al. &8 proposed a multi-directional long-
short-term memory to establish a stable predictive technology to predict the stability of the SG network, which is more
effective than conventional machine learning models. For renewable energy incorporated into the SG, Mostafa et al. 12
proposed a five-step method based on the energy Internet to collect big data for predicting the stability of SG. To manage
and reduce the overload of the SG system, Santo et al. 29 adopted Al and optimization strategies to establish an effective
demand-side decision-making management system to effectively control energy costs.



2.3. Smart Manufacturing Using Distribution and Demand Side Management through SGs

Based on the distribution and demand side management of SGs, as well as the classification of SG technologies (i.e.,
communication technology, information provision, computing intelligence, and cybersecurity in Figure 1), the related
works on the applications of SGs using various techniques are classified in Table 1. Neural networks LYLU2L smart
meters [L2M3I422] and artificial intelligence X3! were adopted for power control; cyber-physical systems [L8l[23124] pig
data [16129125] ' machine learning LA1E26] A [2927] were adopted for demand side management, and network security 28!
[291[30](31][32] \yas used for communication and information transmission. All of them were implemented in smart
manufacturing applications.

Table 1. Related works on the applications of SGs using various technologies.

Category Technology Application Reference
Commumce?tlon Cyber-physical Predicting stability [18][23][24]
technologies system
. Smart meter Power generation and distribution, power sector, forecasting [12)[13][14]22]
Information
provision Big data Power load management, predicting stability (161191251
Neural network Power load, forecasting [101[11]21]
Computational Machine learning Power demand, forecasting, predicting stability [17][18][26]
intelligence
Al Predicting stability, power load management, power demand [15][201[27]
management, forecasting
[28][29][30][31]
Cybersecurity Cybersecurity Security of Internet operations [32]

In the realm of smart factories, which integrate machinery, personnel, and equipment in the Industrial Internet of Things
(lloT), along with interconnected communication and computing networks, the importance of network security technology
is heightened. This technology serves the crucial roles of identifying and safeguarding against potential information risks
within the operational networks, as well as facilitating network restoration when required. Key applications in this domain
involve the implementation of secure and dependable Advanced Metering Infrastructure (SRAMI) 28] and Information and
Communication Technology (ICT) B2, These applications are instrumental in addressing concerns related to data
transmission reliability and security.

Two-way authentication mechanisms play a vital role in ensuring the security of information exchanges between the SG
and users 22, Additionally, assessing system risks within the physical infrastructure of SG networks B[ js an integral
part of maintaining their robustness and security. Note that smart manufacturing and smart factories are central to the
technological shift towards Industry 4.0. Utilizing Al technology for data analysis and enhancing the automation of network
entities is an essential and inherent aspect of this transformation. Further details regarding these concepts will be
expounded upon in subsequent sections.

| 3. Al Applications for SGs in Smart Manufacturing
This section firstly introduces the basic Al concept and then shows recent Al applications for SGs in smart manufacturing.
3.1. Basic Concept of Al

The concept of Al was first proposed by A. M. Turing in 1950 B3 to establish intelligent programs or equipment to develop
good capabilities in self-learning, reasoning, self-correction, and so on. The Al technologies include the following abilities
(341 (1) the reasoning ability to solve problems, (2) the intellectual ability to represent and understand, (3) the ability to set
plans and achieve goals, (4) the ability to understand language and communications, and (5) the ability of perceiving
sound and image inputs and converting them into usable information.

As shown in Figure 2 351381 an Al system generally consists of four modules: (1) data input, (2) processing algorithm, (3)
output decision, (4) and knowledge database, in the same way as human beings think and make decisions. The four
modules are operated as follows:
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Figure 2. Flowchart of operating an Al system [32136],

e Step 1 (data input): The input data is categorized into structured data (e.g., texts and numbers) or unstructured data
(e.g., images and voice), depending on which physical sensors or devices (e.g., detectors and meters) are used in the
system to collect the required data [B7[38],

e Step 2 (processing algorithm): The major Al algorithms are classified into supervised learning (i.e., the model is
established based on the training dataset in which the label of each instance is known), unsupervised learning (i.e., the
label of each instance in the training dataset is unknown), and reinforcement learning (e.g., the agent continuously
interacts with the environment to learn how to correctly take actions). According to the required goals and objectives, Al
algorithms are chosen to solve the problem or provide actions [E2[20141]142]

« Step 3 (Decision output): Through the processing algorithms, the output decision provides a judgment, choice, or action
[43][44][45]

« Knowledge database: The knowledge database provides the Al system with the stored experience and decision data to
assist the operation.

Recent Al technologies and applications that have received much attention include machine learning and deep learning
for data analysis (e.g., supporting and amplifying human cognitive functions for physicians delivering care €, and helping
users to focus their attention to find visual elements more efficiently 7)), prediction (e.g., predicting the compressive
strength of geopolymer concrete 8], detecting COVID-19 9, and predicting future energy use based on historical data
B9y object classification (e.g., automatic image analysis using a variety of Al techniques 24, and indoor obstacle
classification with a good balance between classification accuracy and memory usage 22)), natural language processing
(e.g., extract information in health records using Al natural language processing techniques B3, and effectively use
sophisticated natural language processing technology on large volumes of legal texts B4), recommendation (e.g.,
assessment of agriculture land suitability using an expert system by integrating sensor networks with Al systems ©2, and
an Al recommendation service £8)), intelligent data extraction (e.g., ensuring high-confidence NIR analysis in the Al
performance of the loT B4, and building a Al-based cloud database that can support user demand E8l), and reliable
communications (e.g., mitigating and combating loT cyberattacks using Al B2 dynamically scheduling flexible
transmission time intervals using machine learning €%, and reliable 10T system for data transmission [&11),

3.2. Al Applications in SGs for Smart Manufacturing

Based on the framework of SG technologies (Table 1), most SG systems aim to achieve smart power control and
demand-side management, in which the Al applications of SGs include prediction stability, power load management,
power supply management, and prediction, and these Al applications consist of four modules (Figure 2). Recent surveys
in [621[63164] haye introduced how Al can assist in optimizing the SG systems. This survey focuses on applying Al to
optimize the SG systems to achieve the goals of smart and sustainable manufacturing. Recent Al applications in SGs
include operating cost reduction €3, power system management and load control €867 demand-side management (€8]
69 and power detection A For demand-side management in SGs, Khan et al. Z2 used nature-inspired-based Al
techniques to address real-time scheduling for the coordination of appliances while minimizing the load curve gap and
cost. To minimize utility company costs, Ma et al. [l established a cost optimization model and then derived the optimal
relay assignment as well as power allocation. To establish an accurate system prediction model, Babayomi et al. 81 de-
fined a sequence for predictive controllers to seek optimal control.

| 4. Optimization Applications for SGs in Smart Manufacturing

This section introduces the optimizations for SGs in smart manufacturing, including smart manufacturing environment and
technology importing, and the applications of optimizing SG systems for smart manufacturing.



4.1. Smart Manufacturing Environment and Technology Importing

Smart manufacturing is characterized by the use of highly automated production equipment, which is connected and
communicated through the 10T. It is beneficial for data collection and big data analysis [ and further Al learning (including
machine learning and deep learning) to predict possible production conditions (e.g., using decision trees to predict
categorical values, and using the self-organizing map to predict the physical quality of products manufacturing) and judge
production operations (e.g., using additive models to correct short-term forecast errors during judgment) 4 to provide
advanced manufacturing operations of self-perception, automatic decision-making, and automatic execution. Although
different countries have emphasized different smart manufacturing technologies and applications, most of them have
focused on cyber-physical systems, big data analysis, cloud computing, and energy saving 28], ith advances in smart
manufacturing technologies, highly automated equipment has been introduced, such as human—-machine systems, robots,
automated guided vehicles, and automated storage and retrieval systems [ZAZEIZ9] - Although smart manufacturing has
made manufacturing processes more effective and efficient, these advanced processes through highly automated
human-machine systems and high energy-consuming equipment consume increasing energy and cause increasing
environmental issues (89,

The SG is a key to the supply and management of energy in smart manufacturing BY. As illustrated in Figure 3, a smart
manufacturing framework based on the SG system [2IB2IB3IB4I85] ¢onsists of the following components:
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Figure 3. lllustration of a smart manufacturing framework based on the SG system [41[82][83][84](85]

e Smart manufacturing: The smart manufacturing environment includes human—machine systems, automated guided
vehicles (AGVs), automated storage/retrieval systems (AS/RS), and other equipment, which are monitored by smart
meters.

« Power supply from power companies: The energy required for manufacturing processes is supplied by hydroelectric
energy, wind energy, nuclear energy, and thermal power from the power companies in the SG.

« Self-power supply: A lot of smart factories set up solar panels and energy generators on the SG to control the power
supply independently.

4.2. Optimizing SG Systems for Smart Manufacturing

To optimize their SG systems to avoid shutdowns in continuous manufacturing operations, as shown in Table 2, the
applications of using Al and optimization technologies for SGs in smart manufacturing are detailed as follows:

Table 2. Related Al and SG technology application works in manufacturing.



Optimization
Application

Energy cost

Technology and
Implementation

Machine learning, deep

Reference

[86][87][88]

Note

To effectively reduce the cost of energy use in smart

learning, algorithm, linear [89]
programming

manufacturing, Al technology is introduced into the SG
management A R
for optimizing load control and power scheduling.

Algorithm, grid-edge Smart meters are implemented in the SG, and the

Implementation of . i .
zmart metlers technologies, smart [20121] measured data is analyzed by Al algorithms and models
meter to manage power consumption more accurately.
Machine learning, deep Al technologies are used to evaluate the reliability of SGs
Reliable energy system learning, deep neural [92]93] and simulate possible attacks on loT-based energy
network networks to ensure a reliable energy system.
. - . The digital twin was established to provide an effective
Establishment of the Digital twin technology, [24][95][96] X ‘gt twin w avll provi v
. . . configuration and solution for the energy consumption
digital twin algorithm .
of complex smart manufacturing systems.
Big data from manufacturing is collected and analyzed
Big data-driven Machine and deep [97][98][99] by deep learning to control energy consumption and
optimization learning, sensor achieve sustainable development of the manufacturing
process.
QoS of communication To ensure QoS communication quality in the complex
[100]201]  gmart manufacturing framework based on the SG,
networks and data Controller, sensor 102

sensors and controllers are used for data collection to
improve energy utilization and energy saving.

collected
Energy cost management: Khalid and Powell B8] developed an algorithm for forecasting manufacturing energy load to
effectively reduce peak facility power. Lu and Hong ©BZ! proposed an incentive-based demand response algorithm to
enable the SG system to have reinforcement learning and deep neural network capabilities. Targeting natural gas
demand in the SG, Dababneh and Li B8 proposed a modified simulated annealing algorithm to establish a production
scheduling model to allow manufacturers to reduce energy costs. Wu et al. 82 proposed a mixed integer linear
programming model to schedule actual multi-tasks to minimize the energy cost.

Installation of smart meters: To effectively manage energy consumption, Zakariazadeh 29 adopted smart meters and
an artificial bee colony-based random forest clustering algorithm for data classification and analysis, and the adopted
method was more accurate than other classification methods. Venkatraman et al. 24 developed a smart meter data-
driven rate model to recover distribution network-related charges and imported grid-edge technologies to meet the
needs of consumers of different power scales and save costs.

Reliable energy system: Behara and Saha 24 carried out a reliability assessment for SG-integrated distributed power-
generating with Al methodology-based search algorithms to ensure the reliability and accuracy of the power system.
Rouzbahani et al. 23! simulated the SG system being attacked by the 10T energy network through an attack generator
algorithm and used the deep neural network to detect it to establish a safe and reliable energy system.

Establishment of the digital twin: Wang et al. 24 surveyed the approaches and applications of digital twins for energy
systems. Jiang et al. 2% proposed a complex SG system with the digital twin based on data and knowledge for
duplication of similar unit-level and management. In view of the large energy consumption and fluctuations in the
manufacturing system, Mourtzis et al. 28 developed the stored energy allocation model based on the digital twin
technology to optimize energy allocation and reduce CO, emissions.

Data-driven optimization: Mourtzis et al. 4 surveyed smart manufacturing energy policies and cases, in which a lot of
actual cases used SG data collection and analysis and machine learning methods to control energy consumption and
electricity prices, allowing continuous data-driven optimization. To monitor and optimize the energy consumption of
manufacturing factories, Bermeo-Ayerbea et al. 28! proposed a data-driven energy prediction model to control machine
energy consumption and fault warning and improve energy efficiency. Meng et al. ¥¥ summarized the solutions to
energy consumption in the manufacturing industry and explained how to make smart manufacturing move forward
toward sustainable development through big data collection and the development of decision-making technologies.

Quality-of-service (QoS) of communication networks and data collected: Faheem and Gungor 299 considered that
electromagnetic interference and multipath effects exist at the manufacturing site due to the use of industrial wireless
sensors and 10T, and they would affect the QoS for data collection. They then proposed a QoS-aware data acquisition
protocol model to reduce data error rate and improve the quality of manufacturing data communication. Qureshi et al.
[201] proposed a software-defined network (SDN) for the energy internet to improve the response time and QoS of the



controller, which can also increase the utilization rate of green energy in the SG system. In the complex SG framework,

Faheem and Gungor 192 applied dynamic clustering-based energy efficiency and a QoS-aware routing protocol to

improve the quality of information transmission.

In addition, to collect data for data analysis and machine learning, the 10T infrastructure (e.g., smart meters, sensors, and

controllers) is installed in smart factories. Still, it leads to potential cybersecurity issues, which should be addressed by

various methods for cybersecurity and information protection [L931104]
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