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Adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD+)-dependent post-

translational modification that is found on proteins as well as on nucleic acids. Promising technological advances

have enabled the development of innovative tools to detect NAD+ and NAD+/NADH (H for hydrogen) ratios as well

as ADP-ribosylation. These tools have significantly enhanced our current understanding of how intracellular NAD

dynamics contribute to the regulation of ADP-ribosylation as well as to how mono-ADP-ribosylation integrates into

various cellular processes.
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1. ADP-ribosylation

ADP-ribosylation (ADPR) is a covalent chemical modification conserved throughout all domains of life except

budding yeast . The modification was initially identified as a post-translational protein modification, though it has

recently been found on nucleic acids as well . ADP-ribosylation is catalyzed by ADP-ribosyltransferases

(ARTs) and consists of the transfer of ADP-ribose (ADPr) from nicotinamide adenine dinucleotide (NAD ) onto the

substrate with subsequent release of nicotinamide (NAM) . NAD  and its reduced form NADH are both

important redox equivalents and key cofactors for the electron transport chain, thereby fueling oxidative

phosphorylation (OXPHOS) . Therefore, the dependence of ADP-ribosylation on NAD  directly links the

modification to cell metabolism. ADP-ribosylation comes in two different flavors: while the attachment of a single

ADP-ribose molecule is referred to as mono-ADP-ribosylation (MARylation), the gradual attachments of multiple

ADP-ribose moieties onto one another results in oligo or poly-ADP-ribosylation (PARylation) .

Mammalian ARTs (i.e., writers) have classically been divided into three groups: (i) clostridium toxin-like ARTs

(ARTCs) are mainly described to catalyze extracellular ADP-ribosylation, while (ii) diphtheria toxin-like ARTs

(ARTDs or poly-ADP-ribose polymerases (PARPs)) and (iii) sirtuins Sirt 4, 6 and 7 catalyze ADP-ribosylation in

different intracellular compartments . Among those enzymes, only four proteins (ARTD1/PARP1,

ARTD2/PARP2 and ARTD5 and 6/tankyrase 1 and 2) have been reported to possess PARylation activity . With

the exception of ARTD13/PARP13, whose activity could not yet be detected, all remaining intra- and extracellular

ARTs and sirtuins catalyze MARylation  (Figure 1).
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Figure 1. Compartmentalization of NAD -converting enzymes and NAD . NAD -converting enzymes have been

identified in different cellular compartments. ARTDs are colored in green, ARTCs—in beige, sirtuins—in blue and

ADP-ribosylhydrolases (ARHs)—in purple. Filled circles symbolize active enzymes while open circles indicate

enzymes whose activity has not been confirmed so far. The intensity of the color shows the expected intensity of

the enzymatic activity. The concentration of NAD  (depicted in different yellow to orange shades) is high in

mitochondria (∼300 μM), intermediate in the nucleus and cytosol (∼100 μM) and low (<1 μM) in the extracellular

space and can vary considerably depending on the cell type, metabolic condition, stress and redox status. Poly-

ADP-ribose glycohydrolase (PARG); Terminal ADP-ribose protein glycohydrolase (TARG).

In addition to these enzymes, recent studies have proposed that other protein families, including NEURL4-like

enzymes and certain leucine-rich repeat-containing enzymes, are able to catalyze ADP-ribosylation as well .

In recent years, protein ADP-ribosylation has emerged as a complex and dynamic post-translational modification

that either directly affects the modified proteins or leads to modification-dependent protein complex formation thus

serving as a signaling molecule . ADP-ribosylation-dependent signaling often involves so-called

readers―proteins that contain specific domains able to bind the mono-ADP-ribose (MAR) and/or the poly-ADP-

ribose (PAR) . Representative domains such as macrodomains, WWE domains or PAR-binding zinc fingers

selectively recognize different forms of ADP-ribose such as MAR, PAR and oligo-ADP-ribosylation.
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ADP-ribosylation is believed to be a reversible modification. The removal of ADP-ribosylation is mediated by ADP-

ribosylhydrolases (ARHs, e.g., eraser) that either hydrolyze PAR or MAR or both . MAR-specific

ARHs seem to function in an ADPr amino acid acceptor site-specific manner . The mammalian ARHs can be

classified into ADP-ribosyl glycohydrolases and macrodomain-containing hydrolases, including their most

prominent member, poly-ADP-ribose glycohydrolase (PARG), and its different isoforms . As for the writers of

ADP-ribosylation, the erasers also localize throughout the whole cell, such that together they cover every

subcellular compartment (Figure 1). Amongst the ARHs, ARH1 and the inactive ARH2 localize to the cytoplasm,

while ARH3 was shown to be nuclear and partially mitochondrial . The macrodomain-containing ARH MacroD1

was shown to be mainly mitochondrial, while MacroD2 is cytoplasmic and TARG localizes to the nucleus .

Depending on the isoform, PARG, the major PAR degrading enzyme, either localizes to the nucleus, the cytoplasm

or mitochondria . Interestingly, MAR and PAR are also in vitro substrates for Nudix hydrolases and

phosphodiesterases, although in this reaction, the modification is not completely removed, generating

phosphoribosyl-modified proteins .

Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is

becoming more and more evident that this reversible post-translational modification is involved in a plethora of

physiological and pathophysiological processes. More specifically, the modification plays vital roles in regulating

cellular stress responses related to the quality control of DNA, RNA and proteins, such as the DNA damage

response and the cytoplasmic stress response . In addition, ADP-ribosylation is involved in host–pathogen

interactions and several inflammatory signaling pathways . In non-stress and non-self-defense pathways,

ADP-ribosylation contributes to the regulation of cell cycle progression, gene expression, telomere length and

protein stability . Finally, ADP-ribosylation has also been shown to favor pathophysiological conditions such as

tumorigenesis and tumor progression, in which it has been described to regulate the unfolded protein response

(UPR) , the cytoplasmic stress response, miRNA-mediated post-transcriptional gene regulation , cancer-

related signal transduction pathways or cell migration .

2. NAD  Synthesis

Since NAD  is the only known ADP-ribose donor, ADP-ribosylation is tightly linked to the availability and subcellular

distribution of NAD  pools. In fact, in cell culture, the turnover of ADP-ribosylation was found to directly correlate

with overall NAD  levels and NAD  synthesis . NAD  availability depends on two factors: synthesis capacity and

the cellular redox state. In cells, NAD  can be synthesized de novo from tryptophan, via the Preiss–Handler

pathway from nicotinic acid or from its breakdown products nicotinamide or nicotinamide riboside (NR) via the so

called salvage pathway . The salvage pathway is especially important for the restoration of intracellular

NAD  pools following extensive enzymatic consumption, e.g., upon hyperactivation of ARTD1 and subsequent

hyper-consumption of NAD . The choice of NAD  synthesis pathways depends on the expression pattern of the

respective enzymes involved in either pathway and was shown to be highly cell type- and organ-specific. With the

exception of the liver where NAD  levels were shown to predominantly depend on tryptophan, many tissues and

most transformed cell culture cell lines synthesize NAD  from NAM and thus rely mostly on the salvage pathway
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. The salvage pathway depends on the expression level of nicotinamide phosphoribosyltransferase (NAMPT)

and the nicotinamide mononucleotide adenylyl transferases (NMNATs), NMNAT1, 2 and 3 . The localization

of the three NMNATs is described to be enzyme-specific, with NNMAT1 localizing mainly to the nucleus, NMNAT2

—to the cytoplasm as well as to the Golgi apparatus and NMNAT3—to the mitochondria . While NAMPT is

mostly found in the nucleus and the cytoplasm, a small fraction is believed to be mitochondrial, thus enabling all

three compartments to fully resynthesize NAD  from NAM. Given that many small metabolites are believed to

freely diffuse between the nucleus and the cytoplasm, nuclear and cytoplasmic NAD  pools are thought to be

interconnected. In line with that, in certain cell culture settings, NMNAT1 can compensate for the lack of NMNAT2

and vice versa. In strong contrast to those in vitro experiments, knockout of either NMNAT1 or NMNAT2 in mice is

lethal . Hence, although NAD  is thought to freely shuttle between the nucleus and the cytoplasm in vivo,

neither enzyme seems to be able to functionally compensate for the loss of the respective other one. Comparably,

mutations in either the NMNAT1- or the NMNAT2-encoding gene in humans were shown to result in the early

development of severe disorders , again suggesting that the regulation of these proteins is

compartmentalized and non-redundant in vivo. A comprehensive overview about recent advances in understanding

NAD  metabolism and it impact on health and disease is reviewed elsewhere .

3. Regulation and function of Cellular Mono-ADP-
ribosylation

The establishment of protein MARylation can be regulated on various levels. First, expression and cellular

distribution of enzymes largely contribute to controlling the abundance of the enzymes, their localization and their

target spectrum. Second, the ADP-ribosylation ability of every ART is naturally linked to the availability of NAD  and

its Km for NAD  that varies from enzyme to enzyme and ranges from only few µM to several hundred µM 

. Finally, comparable to other enzymes, mono-ARTs can be regulated by additional signaling events and binding

to cofactors (  and reviewed in ).

4. Detection of Mono-ADP-Ribosylation

The two main challenges for the development of ADP-ribosylation detection tools can be attributed to the

heterogenic nature of ADP-ribosylation (MARylation vs. PARylation) and similarity of this molecule to several other

abundant cellular biological (macro-)molecules, including adenine nucleotides and nucleic acids . Many

antibodies against poly-ADP-ribose can thus recognize RNA and DNA and vice versa . The heterogeneity

can be attributed to the fact that ADP-ribosylation is catalyzed by at least 25 distinct enzymes with cell type-specific

expression patterns and different cellular localizations and targets, as well as amino acid preferences. The

currently available ADP-ribosylation tools can roughly be divided into three different categories, which are

summarized in Table 1: (i) anti-ADP-ribose or PAR-binding antibodies, (ii) ADP-ribose-binding domains and (iii)

chemical labeling of ADP-ribose. All three approaches and the most recent advances made in each category are

discussed in the following sections.
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Table 1. Overview of currently available ADP-ribosylation detection tools.

Antibodies

Type of ADPR Specificity Potential Application and Caveats Reference

PAR PAR

Immunfluorescence (IF), Western blotting

(WB) for PAR

Unable to detect oligomers and MAR

Pan-ADP-ribose
MAR, PAR, amino

acid-independent

IF, WB for MAR and PAR

Compatible with pulldowns and MS

Cross-reactivity with nucleotide derivatives

and ATP-derived PTMs possible

Might have biases towards specific ADPr

amino acid acceptor sides

MAR

MAR, amino acid-

independent

IF, WB for aa- and protein-specific

MARylation

Potentially compatible with pulldowns and

MS

MAR attached to

Ser or Thr

IF, WB for aa- and protein-specific

MARylation

Potentially compatible with pulldowns and

MS

ADP-Ribose-Binding Domains

Type Specificity Potential Application and Caveats Reference
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WWE PAR, oligo ADPR

IF, WB, chromatin affinity precipitation

(ChAP) for PAR

Cross-reactivity with nucleic acids possible

Macro(H2A1.1) PAR, MAR

IF, WB for PAR and MAR

Might have a bias towards specific ADPR

types

Macro(Af1521) PAR, oligo, MAR

IF, WB, ChAP for PAR

Compatible with pulldown methods

(Immunoprecipitation (IP), MS)

Might have a bias towards specific ADPR

types.

Macro3x

(ARTD8/PARP14)

PAR (faint), MAR

IF, WB for PAR

Compatible with pulldown methods (IP).

Fusion to green fluorescence protein (GFP)

allows real-time analyses

Might have a bias towards specific ADPR

types

Chemical Labeling

Type Specificity Potential Application and Caveats Reference

Enzymatic labeling of

terminal ADP-ribose

(ELTA)

PAR, oligo, MAR Compatible with pulldown methods (IP, MS)
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