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The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut
microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of
neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of
motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis.
Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and
progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully
elucidated.

Parkinson’s disease gut microbiota dysbiosis intestinal permeability diagnosis
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| 1. Gut Microbiota-Based PD Interventions: Antibiotics

Antibiotics are chemical compounds able to Kill or arrest the growth of certain microorganisms. Although they are
mainly used to counteract or prevent bacterial infections, their additional anti-inflammatory, immunomodulator,
neuroprotective, antiamyloidogenic and antioxidant properties are becoming of increasing interest in the context of
neurological disorders, including neurodegeneration WLIZIEIAIB  |ndeed, beside counteracting dysbiosis and
constipation (¢ it has been demonstrated that certain antibiotics can inhibit the activity of matrix metalloproteinases
and prevent mitochondria dysfunction, microglia activation, protein misfolding and a-synuclein aggregation &I
(2911 For example, treating mice where Parkinson’s disease (PD) has been induced by MPTP with a cocktail of
broad-spectrum antibiotics (ampicillin, metronidazole, and neomycin sulfate) was found to preserve TH and
dopamine transporter immunoreactivities, which are generally lost upon MPTP administration 2. This beneficial
effect is mediated by an increase in Proteobacteria, as well as by a decrease in Deferribacteres and
Saccharibacteria (TM7) abundance, which reflect an altered gut microbiota (GM) composition characterized by
diversity loss 2. Similar results were obtained in 6-OHDA-induced PD rats upon chronic treatment with an
antibiotic mixture containing neomycin, pimaricin, bacitracin and vancomycin, which prevented dopaminergic
neuronal death, relieved inflammation, ameliorated neurotoxicity and reduced motor impairments as measured by
cylinder, rotation and stepping tests [12l. Recently, Cui et al. reported that vancomycin pretreatment of MPTP-
induced PD mice improved motor symptoms by reducing SN astrocytes and microglia activation 241, Notably, the

authors proposed that neuroinflammation is indirectly inhibited by Akkermansia and Blautia, which increase in
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abundance upon vancomycin treatment and interfere with the toll like receptor 4 (TLR-4)/NF-kB pathway in the gut
and in the brain 24!, Although Akkermansia is generally reported as harmful in PD patients, its dual negative and
positive role may lean towards the latter when mucin conversion into SCFAs prevails over gut-barrier degradation,
thus explaining this apparent discrepancy. In humans, an intestinal decontamination therapy consisting of sodium
phosphate enema, oral rifaximin and polyethylene glycol resulted effective in reducing dyskinesia and motor
fluctuations related to PD, but more studies are required 13, Other approaches focused on the use of certain
specific antibiotics instead of cocktails have also been proposed to maximize the therapeutic benefit without

impacting beneficial bacteria.

Rifaximin is a broad spectrum antibiotic with poor systemic absorption indicated to treat SIBO B8 |n this
respect, rifaximin-mediated SIBO eradication in PD patients resulted in reduced motor fluctuations without
impacting on L-dopa treatment (8. This benefit should be ascribed to rifaximin-mediated modulation of the brain
thyrotropin releasing hormone (THR) and THR-like peptides, which have caloric-restriction-like, anti-aging,
neuroprotective properties and are known to be involved in the gut-brain axis 9. However, no improvement in Gl
symptoms in 8 PD patients treated with rifaximin poses controversy over the actual efficacy of this antibiotic as PD

treatment, calling for new studies 29,

Ceftriaxone (CTX) is a B-lactam antibiotic with a strong and safe past record 2122 The treatment of several PD
animal models with CTX is known to improve neuroinflammatory and oxidative stress markers, stimulate
neurogenesis and promote astrocyte viability through the suppression of NF-kB/c-Jun-mediated signaling [2111221[23]
(24 Mechanistically, CTX also reduces extracellular glutamate levels by increasing the expression of the glutamate
transporter-1 in astrocytes, thus avoiding brain excitotoxicity 221241251 Moreover, it has been observed that CTX
binds to a-synuclein with considerable affinity and prevents its polymerization in vitro 22281271 in vivo, there is
evidence that CTX treatment modifies the GM composition of MPTP-induced PD mice by disadvantaging the
growth of Proteus while increasing the relative abundance of Akkermansia species, which act as probiotics when

their SCFAs-converting activity exceeds that of intestinal barrier degradation 28],

Further studies proved the ability of CTX to reduce the levels of the main pro-inflammatory mediators TLR-4,
MyD88 (myeloid differentiation primary response 88), IL-13, TNF-a and NF-kB in the brain, TLR-4, MyD88, and
NF-kB in the colon and IL-13, TNF-a and IL-6 in the serum [281129l30] ' Simjlarly, CTX-mediated increase in the main
antioxidant modulators glutathione, superoxide dismutase (SOD) and catalase was found to prevent the oxidative
damage observed in rats treated with MPTP 229 |n line with these data, CTX administration was associated with
reduced glial fibrillary acid protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1) expression, two
markers of astrogliosis and microglia activation, respectively [28l31132]133] At the neuronal level, pre- or post-
treatment with CTX prevented the loss of TH-positive neurons, reduced glutamatergic hyperactivity, and promoted
neurogenesis at the level of SN and hippocampal dentate gyrus in different rat models of the disease [221331(341[35]
(36137138 As a consequence, dyskinesia, motor impairment and memory loss were all reverted upon CTX
administration [22B0I[331[34](35][36][38[391140]  githough conflicting evidence still remains about its ability to improve

learning outcomes 1. Of note, CTX has been shown to interact synergistically with other compounds currently
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used or under investigation for the treatment of PD, such as erythropoietin, ropinirole and memantine, but the

safety as well as the efficacy of these combinations should be further assessed [22130142],

Minocycline is a second-generation semisynthetic tetracycline with anti-microbial, anti-apoptotic, anti-inflammatory
and antioxidant properties [431441[45146] Thanks to the ability to efficiently cross the BBB, minocycline is considered
neuroprotective for a variety of neurological conditions, including PD [“7M8I4NB0IB1B2]53] This effect is mainly
ascribable to the minocycline-dependent suppression of microglia activation, which has been reported by several in
vivo studies BZIBABSIBEIBTIGEIEA |y this respect, microglial inactivation by minocycline correlates with decreased
IL-1(3 formation, as well as reduced NADPH-oxidase and inducible nitric oxide synthase (iNOS) activity, suggesting
that both anti-inflammatory and antioxidant pathways are involved 8189 |n vitro, minocycline addition to 6-OHDA
treated PC12 cells suppresses the release of lactate dehydrogenase, reactive oxygen species (ROS) and caspase
3 while supporting the activity of the antioxidant enzymes SOD and catalase “ZI6162]63] Of note, these molecular
changes seem to explain the increased striatal dopamine levels as well as the cognitive and locomotor
improvements observed in zebrafish, mouse, and rat models [3I561601[64]651[661(67]  Another mechanism through
which minocycline prevents apoptosis is by limiting mitochondria dysfunction, inhibiting caspase 1 and 3
expression, and preventing the degradation of the antiapoptotic protein ICAD (the inhibitor of the caspase-activated
deoxyribonuclease) MUAEEIBAO  However, despite the promising results, controversy remains. Indeed, an
enhanced toxicity has been reported upon minocycline administration to MPTP-treated rodents and primates,
resulting in disease exacerbation 1172, Moreover, results from a phase Il clinical trial show no benefit from the use

of minocycline and evidence decreased tolerability, although more studies are needed before drawing premature
conclusions 374,

Doxycycline (DOX) is another broad-spectrum antibiotic belonging to tetracyclines that has been considered as PD
treatment 2, In vitro, DOX has shown anti-inflammatory properties by interfering with p38 MAP kinase and NF-kB
pathways, reducing the expression of the activated microglia marker IBA-1 and inhibiting the production of the pro-
oxidant and pro-inflammatory factors ROS, nitric oxide, iINOS, cyclooxygenase-2 (COX-2), IL-1B and TNF-a 877
[78] Concerning neuroprotection, DOX exerts an anti-apoptotic activity by repressing the matrix metallopeptidase-3
(MMP-3) in dopaminergic neurons and microglia both in vitro and in vivo 2. In addition, DOX stimulates neurite
growth through the activation of PI3K/Akt and MAPK/ERK pathways, independently from nerve growth factor
activity 9. Of note, recent studies demonstrated that DOX reduces the size and load of a-synuclein oligomers by
converting them into high-molecular weight species that are not able to form fibrils, thus increasing cell viability (8
(891 When tested in vivo, DOX confirmed its neuroprotective activity by limiting dopaminergic neuronal loss in SN
while increasing striatal dopamine levels 8182l This beneficial function is achieved by contrasting glial reactivity
and by reducing the major histocompatibility complex-1 expression in microglial cells B2 |n 6-OHDA-treated
rats, both DOX and its derivative COL-3 showed an anti-dyskinetic potential when administered in combination with
L-dopa [83] According to the authors, the reduced levels of MMP-2/-9, MMP-3, ROS and of the dyskinesia-linked
immunoreactivity markers FOSB, COX-2, GFAP and OX-42 would explain these benefits 831 Nevertheless, despite

promising in vivo data, clinical evidence is still lacking.
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Rifampicin is a macrocyclic antibiotic with cytoprotective functions that have been considered for PD treatment [84]
83 |ndeed, there is evidence that rifampicin prevents a-synuclein fibrillation by promoting SUMOylation, which
increases fibril solubility preventing neuronal death BEIE7IB8] Other studies reported a reduction in IL-1B, TNF-a,
IL-6 and ROS released by cells double treated with rotenone and rifampicin, thus indicating a promotion of
neuroprotection BRI Although not completely defined, rifampicin appears to sustain cell viability through
different mechanisms: (i) by enhancing autophagy 22 (ii) via PI3K/Akt/GSK-3B/CREB pathway modulation [©2!:
(iii) by upregulating the unfolded protein response marker GRP78 through the PERK/elF20/ATF4 pathway (22, In
vivo, MPTP-induced PD mice treated with rifampicin showed increased striatal and SN TH immunoreactivity,
attenuated levels of oxidative stress and re-established dopaminergic signaling in the striatum 24, More recently,
rotenone-induced PD in zebrafish has shown benefit from rifampicin administration due to the decrease in

neuroinflammation 221,

Generally, although promising, two main concerns remain about the use of antibiotics in PD treatment: (i)
antibiotics can kill some specific microbial populations leading to intestinal dysbiosis and neurological dysfunction
and (i) their prolonged and widespread intake would favor antibiotic resistance RI€I7] There is evidence that
ceftriaxone (a third-generation cephalosporin)-induced dysbiosis worsens motor symptoms in 6-OHDA treated mice
and correlates with dopaminergic neuron toxicity as well as intestinal and systemic inflammation 28, Moreover,
guinolones and B-lactams are known to trigger neurotoxicity through their interference with gamma-aminobutyric
acid and benzodiazepine receptors signaling 2. Mechanistically, it has been hypothesized that antibiotic-induced
dysbiosis may favor the growth of Enterobacteria producing the bacterial a-synuclein curli, which promotes
neurodegeneration 222001 |n addition, leaky gut-mediated systemic inflammation might result from dysbiosis and
mediate the BBB damage, allowing circulating neurotoxins to enter the brain 19, |n humans, a Finnish study
conducted on 13,976 PD and 40,697 healthy individuals showed that taking certain antibiotics years earlier,
especially macrolides and lincosamides, correlates with an increased risk of developing PD 1221, However, results
from another prospective study involving 59,637 women did not report any correlation between antibiotic intake and
PD incidence 298], Overall, contrasting results and scarce long-term safety data remain a concern. Innovative drug
delivery systems based on nanoparticles are now being tested to improve the clinical benefit of these antibiotics
[73] At the same time, synthetic tailoring to potentiate the neuroprotective chemical functions over the antimicrobial
ones is another promising approach for the risk-benefit optimization £,

| 2. Gut Microbiota-Based PD Interventions: Probiotics

Probiotics are defined as “live microorganisms that, when administered in adequate amounts, confer a health
benefit on the host” 224, |t is widely reported that the most common bacteria used as probiotics (Lactobacilli,
Bifidobacteria, and Enterococci) 293 have potential benefits in restoring the GM, reducing intestinal permeability,
inflammation, and oxidative stress, improving immune homeostasis and Gl symptoms (constipation, diarrhoea,
bloating, and abdominal pain), as well as preventing or counteracting several conditions, including Gl, liver, and
cardiovascular diseases, obesity, diabetes, cancer, and H. pylori and urogenital infections [L1I[106][107][108][109]

Moreover, it is now evident that GM dysbiosis is a factor that takes part in the development of several neurological

https://encyclopedia.pub/entry/31673 4/27



Therapeutic Approaches for Parkinson’s Disease and Gut Microbiota | Encyclopedia.pub

diseases, including PD, AD, multiple sclerosis, autism spectrum disorders (ASD), anxiety, depression,
schizophrenia, and other mental illnesses 9L Concerning PD, as previously mentioned, altered GM could
contribute to the onset of some PD-related complications, such as constipation, the most common non-motor
symptom 121 Therefore, modulation of the microbiota-gut-brain axis using probiotics could be a promising
complementary approach to traditional methods to prevent or counteract these disorders, including PD, as widely
reported in literature [11L[L131[114][115][116] For jnstance, Bacteroides fragilis has been documented to improve ASD
symptoms and gut barrier integrity, and reduce intestinal permeability 2XZ: further, the probiotic SLAB51, a
formulation of nine live bacterial strains (Streptococcus thermophilus, B. longum, B. breve, B. infantis, L.
acidophilus, L. plantarum, L. paracasei, L. delbrueckii subsp. bulgaricus, and L. brevis) improves cognition and
reduces the accumulation of amyloid plaques, brain injury, and inflammatory cytokines plasma levels in AD mice
[118] while the assumption of a probiotic fermented milk drink containing L. acidophilus, L. casei, B. bifidum, and L.
fermentum improves cognitive function in AD patients 119, Concerning PD, many studies showed that probiotic

intake can reduce neuroinflammation, inhibit the loss of dopaminergic neurons, and modulate brain functions.

| 3. Gut Microbiota-Based PD Interventions: Prebiotics

According to the International Scientific Association for Probiotics and Prebiotics (ISAPP), prebiotics are defined as
“substrates selectively used by host microorganisms that confer health benefits to the host, while retaining the
microflora-mediated health benefits” 220, Prebiotics are dietary fibres originated from soybeans, raw oats,
unrefined wheat and barley, non-digestible carbohydrates and oligosaccharides, including galacto-oligosaccharides
(GOS), fructo-oligosaccharides (FOS), inulin, and lactulose [21122]  polyphenols (catechin, epicatechin and
quercetin) can also act as prebiotics 123, They can alter GM composition, by favouring the growth and the activity
of beneficial bacteria, and by decreasing pathogens in the GI tract; further, they have positive effects on lipid

metabolism, decrease the recurrence of Clostridium difficile infections, and alleviate Gl and allergic disorders [124]
[125][126]

In the gut, the beneficial microbes metabolize the prebiotics, resulting in the generation of SCFAs (namely, acetate,
propionate, butyrate) that are involved in neuromodulation, in anti-inflammatory processes, in the regulation of both

intestinal and blood-brain barriers [127]1128]

Like probiotics, prebiotics also play a beneficial role in managing neurological and neurodegenerative diseases
(1291 For instance, lactulose and melibiose improve short-term memory and cognitive ability in AD mice 139
bimuno-GOS ameliorate anti-social behavior in children with ASD [31l: oral administration of Marinda officinalis-
derived oligosaccharides ameliorates memory and learning ability, decreases plaque formation, oxidative stress,

and inflammation in both rats and mice AD models [132][133]

Concerning PD, to date, few studies have been conducted to evaluate the effects of prebiotics on PD animal
models and patients (Table 1) [112J134][135][136][137][138] |5 5 mouse model of PD, Perez—Pardo et al. found that
prebiotic fibers (FOS, GOS and nutriose, a soluble corn fibre) can normalize motor symptoms, reduce a-synuclein

levels, and restore Gl dysfunction, inflammation and dopamine transporter expression 138: further, it has been
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shown that the prebiotic polymannuronic acid can prevent dopaminergic neuronal loss via SCFAs-mediated anti-
inflammatory and anti-apoptotic mechanisms 136l |n addition, another study, performed by using 6-OHDA PD rat
model, reported that the supplementation with the medium obtained from the probiotic L. salivarius subsp.
salicinium AP-32 culture can reduce dopaminergic neuronal loss, motor dysfunctions, muscle atrophy, oxidative
stress (increased SOD and GPx) and inflammation 3411391 |nterestingly, another study highlighted a raise in
BDNF levels in the hippocampus of rats after the administration of FOS and GOS [149, Since BDNF is involved in
neuronal protection, survival, growth, and in synaptic plasticity 221 this finding suggests that prebiotics
supplementation might have a role on brain neuroprotection. Finally, some studies performed in PD animal models
report the beneficial effects of sodium butyrate in improving PD symptoms 42143l therefore, butyrogenic

prebiotics could be used to increase butyrate concentration in the colon and help to manage PD 127,

Table 1. The effects of prebiotics treatment regarding in vivo experimental studies.

Experimental Treatment

Prebiotic . Treatment Effects Reference
Model Duration
Improvement of motor
symptoms, gastrointestinal
R - . . . P -
GOS, IcFOS, scFOS, . otenong dysfunction, and inflammation (Perez
. induced mice 10 weeks s Pardo et al.,
nutriose model (IGFAP, (T-cells infiltration). 2017) [135]
Restoration of DAT expression.
Reduction of a-synuclein levels.
Abolition of the apoptotic
process (!Bax, {Bax/Bcl-2
ratio).
Prevention of dopaminergic
neuronal loss (1TH gene and
MPTP- protein expression in the .
. . . . (Liu et al.,
Polymannuronic acid induced 5 weeks striatum). 2022) [136]
model mice Increase of faecal acetate,
butyrate, and total SCFAs
levels.
Inhibition of striatal
inflammation ({ TNF-a mRNA
levels).
Reduction of dopaminergic
neuronal loss, motor
- . . dysfunctions, and muscle
Preb_|0t|c (GBI mgdlqm 6-OHDA- atrophy. (Nurrahma
obtained from L. salivarius .
subsp. salicinium AP-32 induced rat 8 weeks Increase of GPx and faecal etal., 2021)
P- . model SCFAs (propionate, butyrate). [139]
culture medium . . .
Restoration of mitochondrial
function and energy
metabolism.
Prebiotic residual medium 6-OHDA- 8 weeks Amelioration of motor (Tsao et al.,
obtained from L. salivarius induced rat symptoms. 2021) [134]
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Experimental Treatment

Prebiotic Model Duration Treatment Effects Reference
subsp. salicinium AP-32 model Reduction of inflammation
culture medium (\TNF-a) and OS ({ROS,
1SOD, 1GPXx).
Increase of SCFAs production
(propionate, butyrate).
Modulation of GM composition
(tRuminococcaceae,
1 Bifidobacterium,
tFaecalibacterium,
LPropionibacterium,
| Clostridium, {Cylindriodes,
LRuminantium).
Dietetic fiber supplements Improvgment " COI’]S'[.IpatIOH (Astarloa et
. 19 PD and in motor function.
(wheat, pectin, . 8 weeks al., 1992)
dimethylpolyoxyhexane-900) patients Increase of total plasma [137]
levodopa levels.
Increase in stool frequency and (Ashraf et
Psyllium 7 PD patients 8 weeks . al., 1997)
weight. [138]
et al., by
Improvement of non-motor
=) symptoms. (Beckeret ~ found a
Resistant starch . [137][138lweeks  Reduction of calprotectin levels. al., 2021) : an oral
patients Increase in butyrat 112]
yrate
concentration. f SCFAs,
rdn IU all iivicascu Uul._lelI.U vulivciiuauvli, ad> vvcii as aill IIII|JI UVCITHITIHIL I HIULI-inivwvl Dylll'JLUIIID 112 .

In conclusion, despite few studies on PD, the satisfactory clinical outcomes on patients, especially on constipation,
Sipyegiations pebibliza: Hibkdroaydopassibe: RajuvRel2asspyiaied PO BaltRoBshethtyre pinomian 2¢IIDREI depimine
tremsfger t&SidpogtighiBludlacusion. protein; GM: gut microbiota; GOS: galactooligosaccharides; GPx: glutathione
peroxidase; IcFOS: long-chain fructooligosaccharide; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; OS:
P& Gt MierobiotalBas S0 PIY INEEFVERtoNS: Dt cren i scits scros
short-chain fructooligosaccharides; SOD: superoxide dismutase; TH: tyrosine hydroxylase; TNF-a: tumor necrosis
Reteghhhad tifiresrRSenterdeaERRSare involved in the prevalence and incidence of neurodegenerative diseases,
nutrition plays an essential role in the pathogenesis and development of neurodegenerative diseases such as AD
and PD [124l145] Recent findings have revealed that diet, as a non-pharmacological element, plays an important
role not only as a risk factor but also as a potential therapeutic approach for treating PD (Table 2) [105][146][147][148]
(149][150][151][152][153][154][155][156][157][158][159][160][161]  The effects of diet intervention on PD development can be
attributed to different mechanisms. First, by altering intestinal microbiota composition and consequently affecting
the gut-brain axis or by directly interfering with immune cells. As a matter of fact, diet is probably the most
influential factor in determining the structure and metabolic function of the intestinal microbiota. Moreover, dietary
components might also modulate the chronic inflammatory response that is associated with aging. Intriguingly, diet
components can reduce constipation and improve L-dopa uptake, which is the first-line therapy for PD [162][163]

Therefore, consuming a constant diet on a long-term basis can impact the development of PD; however, it is still to
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be elucidated as to how a particular diet reduces the risk of this development. Here, the researchers discuss how
changes in diet may prevent or modify PD progression, with a special focus on Mediterranean, ketogenic, and

omega-3-rich diets.

Table 2. The effects of dietary interventions in PD clinical trials.

Reference Type oft Type of Du:’:tary Aim Outcomes
Study Intervention
Metcalfe- . Both diets delay PD onset; MIND
Roach et al., CrS MIND or Medi MIND/ZA:SdeItVS' Pb slightly superior in the female
2021 [146] subgroup.
Improvement in executive
st g Meawawwe MO s
al., 2020 147 function . ’ Y
in the total score of cognitive
assessment.
Correlation with weight loss,
Rusch et al., . . . improved constipation, and
2021 [148] cr Medi Medivs. Gl function modified gut microbiota in PD
patients.
Cassani et al., . Medi vs. PD N .
2017 [149] Medi progression No significant correlation.
Maraki et al., . . Correlation with lower probability
2019 159 €S Medi Medivs. PD onset of prodromal PD in older people.
Zamzam Medi vs. total
Paknahad et CT Medi antgfgz;lr:n?jagaDClty Improvemesnet\s/ ;:tTAC and PD
al., 2022 451 ) .
severity
Alcalay et al., . . Medi adherence is associated
2012 [152] CCs Medi Medi vs. PD status with PD age at onset.
Strikwerda et : . Medi, Dutch diets .
al., 2021 1153 €S Medi, Dutch diets vs. PD risk Protective effect.
Yin et al., . . . .
2021 [154] CSs Medi Medi vs. PD risk Protective effect.
MIND vs. PD .
Agarwal et al., LS MIND develo ¥Znt and Decreased risk and slower
2018 [158] pmen progression of PD in older adults.
progression
Lawrie et al., MIND vs. PD Decreased fatigue and
2022 [156] crs MIND severity depression.
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Type of Type of Dietary

Reference Study e Aim Outcomes
Koyuncu et al., KD vs. PD patients . .
2021 [157] KD voice quality VHI * score improvement
Vanltallie et Feasibility KD vs. PD .
al., 2005 1158 study KD progression UPDRS scores improvement.
Phillips et al., KDvs ? low-fat, KD vs. PD Motor and nonmotor symptoms
159 CT hlgh- . .
2018 (159 carbohydrate diet progression improvement. \ t
lota
Tidman et al., KD vs. PD :
2022 [160] CT KD progression UPDRS scores improvement.

Fecal microbiota transplantation (FMT) consists In the transter of resuspended and filtered stool material from a
healthy donor to a patient's gut. The aim of this approach is to counteract dysbiosis while favoring the
ALRIMALE SRR SAINe St Mot adansbSEo ok EofrRleddyat KB prEferelitdtRbd-Bt
Proddinalish deiMe S YR FRABEA R MINDS MG LR RS 9 UL SAKSRHAR LY OGUaRRISARIA LG
Belay sl menabainsaiiyRiRg fRLYsACKusHT RRSoHAlITA P s IR AT ERERRINYG BFRkuMEh el
BRAGIEARANIR, seldlalPsRATIBLHAIEhSERI B MRNRIRRER B ARrE MLy Sh Ol fiSaRlL: S B EEHiBY RN
ﬁgﬁ%‘ﬁ?gpé/a}lafg%?aé/@i,cﬁaﬁ&rﬁjgefﬁuItipIe sclerosis, epilepsy, ASD, Tourette syndrome, diabetic neuropathy, AD and
PD, with promising preclinical and clinical data 167I[268I[169][170][171] Concerning PD, consistent preclinical studies
and a handful of human case reports have shown that FMT might be exploited to reduce motor and non-motor
symptoms, as well as constipation, at least in the short term [168I172/[173][174][175][176][177)[178][179][180)[181] (Tgple 3).

Early evidence came in 2016 from the work of Sampson et al., who first reported that the transfer of fecal matter

from human PD patients to a-synuclein overexpressing mice substantially worsened their physical symptoms in
comparison with mice receiving feces from healthy human donors 272, These results were then confirmed in 2018,
when Sun et al. showed that fecal microbiota transfer from PD mice to their healthy counterpart increases motor
deficits while reducing the striatal levels of the neurotransmitters dopamine, serotonin and their metabolites, thus
reproducing the typical features of the disease (1731, Conversely, fecal matter transplantation from healthy mice to
PD recipient mice improved physical performance, ameliorated motor symptoms and reduced dysbiosis in several
independent studies [XZ3IA74I175][176] | 5oking at the GM composition, there is evidence that FMT re-establishes
eubiosis by disadvantaging the growth of Desulfovibrio, Akkermansia and Proteobacteria (orders Enterobacteriales
and Turicibacteriales), while simultaneously favoring the proliferation of beneficial bacteria such as Bacteroidetes
and Actinobacteria phyla, with a particular effect on Blautia and Prevotella species L3476 Noreover, FMT
appears to protect from gut inflammation by promoting intestinal barrier integrity and reducing the levels of LPS in
the colon, serum, and SN, therefore preventing leaky gut and systemic inflammation 1741, At the brain level, FMT
contrasts cognitive damage by decreasing a-synuclein expression and restoring the optimal levels of the striatal
neurotransmitters dopamine and serotonin, thus supporting neuroprotection 737377 Notably, decreased
neuroinflammation following FMT has been reported by numerous preclinical studies LZ3II74I175][176] Thjg
beneficial effect should be ascribed to the ability of GM to modulate microglia and astrocyte activation in SN by

regulating the TLR4/NF-kB pro-inflammatory pathway and reducing the expression of GSK3[3, iNOS and IL-1j3,
which are implicated in PD pathogenesis and progression [L73][1741[175][176][182][183][184]
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Table 3. Preclinical and clinical studies on the use of fecal microbiota transplantation for Parkinson’s disease.

Study

= Cohort

Zhao et

al., 2021 Mice
[174]

Sun et

al., 2018 Mice
[173]

Zhong et

al., 2021 Mice
[175]

Zhang et

al., 2021 Mice
[176]

Zhou et Mice
al., 2019

Study Groups

Controls (n =
15), rotenone
(n = 15) and
rotenone +
FMT (n = 15)

Controls (n =
15), MPTP +
PBS (n = 15)
and MPTP +
FMT (n = 15)

Controls + PBS
(n =10),
controls + FMT
(n =10), MPTP
+ PBS (n = 10),
MPTP + FMT
(n=10)

Controls (n =
3), MPTP (n =
3) and MPTP +

FMT (n =3)

Mice pre-
treated with

Donor

Control
mice

Control
mice

Control
mice

Control
mice

Control
mice or

Recipient

Rotenone-
induced PD
mice

MPTP-induced

PD mice

Controls or

MPTP-induced

PD mice

MPTP-induced

PD mice

MPTP-induced
PD mice pre-

Experimental
Procedure

Oral gavage
(100 pL
bacterial

suspension)

daily for 2
weeks

Gavage (200
uL bacterial
suspension

containing 108

CFU/mL) daily
for 7 days

Gavage (200
uL bacterial
suspension

containing 108

CFU/mL) daily
for 7 days

Transplantation
with 200 pL
bacterial
suspension
(containing 108
CFU/mL) daily
for 2 weeks

Gastric gavage
(200 pL

Results

| Dysbiosis
| Motor symptoms
1 Intestinal barrier and
BBB integrity
| Systemic
inflammation
1 Neuroinflammation
(SN)
L LPS (serum, colon
and SN)
| TLR4/NF-kB pathway
(colon and SN)

| Dysbiosis
| Fecal SCFAs
| Motor symptoms
1 DA and 5-HT
(striatum)
| Microglia and
astrocyte activation
(SN)
| TLR4/TNF-a pathway
(gut and brain)

| Motor symptoms
| Fecal SCFAs
L a-syn (SN)
| Microglia activation
(SN)
| TLR4/NF-kB pathway
(striatum and SN)

1 Neuroinflammation
(SN)
| Motor symptoms
1 Blautia
| Anaerostipes,
ASF356,
Ruminococcus and
Bifidobacterium
 Microglia and
astrocyte activation
(SN)
L IL-1B, INOS, GSK3p
and p-PTEN (SN)

1 DA and 5-HT
(striatum) in PD-NF

Adverse
Events

N.A.

N.A.

N.A.

N.A.
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Ref. g;lli?)):t Study Groups
i MPTP and
antibiotics,
divided in PD-
PBS (n = 8),
PD-NA (n = 8),
PD-NF (n = 8)
and PD-NF/HK
(n=28)
GF + FMT from
SPF control
Sampson mice, GF +
etal., Mice FMT from PD
2016 (2721 patients, GF +
FMT from
healthy patients
PD patient
resentin
Huang et Human tfemor forg7
al., 2019
[178] (case report) years and
constipation
(>3 years)
Kuai et Humans
al., 2021 (prospective PD patients
(L9 single study)
PD patients +
Aue et coIoFr':/(IJZéZI;y n
al., 2020 Humans '
[180] =10;
nasointestinally,
n=5)
Sega[ll;tgl[lsom %”ns QPD patients
al., 2021  (uncontrolled LIPS
(181 case series) for 5 years
(mean).

Donor

control
mice
undergoing
FMT

Human PD
patients (n
= 6)’
human
healthy
controls (n
=6) or
SPF
control
mice (n =
3)

26 y.0.
healthy
male

Frozen
fecal
microbiota
from the
China
fmtBank

5 Healthy
donors
(mean 22
y.0., 3
males and
2 females)

2 healthy
donors
(males, 38
and 50

y.0.)

Recipient

treated with
antibiotics

a-syn-

overexpressing

mice

71y.0. male
PD patients

PD patients (n
=11)

PD patients

6 PD patients
with
constipation
(mean 52 y.0.),
3 males and 3
females

Experimental

Procedure
bacterial
suspension
containing 108
CFU/mL) daily
for 7 days

Oral gavage

Colonoscopy
(200 mL of
fecal
microbiota
suspension)
daily for 3 days

Intra-intestine
transplantation
of 40-50 mL of

frozen fecal
microbiota
resuspended in

200 mL saline

solution

Colonoscopy
or
nasointestinal
administration

Colonoscopy
(300 mL of
fecal
suspension)

Results

mice
+ Neuroprotection in
PD-NF mice

In GF + PD-FMT mice:
1 Physical impairment
1 Proteus, Bilophila
and Roseburia
| Lachnospiraceae,
Rikenellaceae,

Peptostreptococcaceae

and Butyricicoccus
| Acetate

1 Proprionate and
butyrate

1 Tremor (no tremor for

2 months)
| Constipation
t o-diversity

| UPDRS score 1 week

after FMT

t Blautia and
Prevotella
| Bacteroidetes
1 H-Y, UPDRS and
NMSS scores
| Wexner constipation
and PAC-QOL scores

| PSQI, HAMA, PDQ-

39, HAMD@PRS—III
and NMSQ

| Motor and non-motor
symptoms
| Constipation

Adverse
Events
N.A.
No
No
ng et al.
ation (>3
5 cases:
diarrhea (n = tremor
2), abdominal
pain (n=2)  studies
and flatulence
(n=1)  otor and
essment
1 case
requiring
hospitalization
for
observation noscopy

compared to nasointestinal delivery 289, In line with preclinical data, PD patients undergoing FMT showed an

increased presence of Blautia and Prevotella and a diminished overall abundance of Bacteroidetes, thus

confirming the efficacy of this approach in modifying the GM composition 272,

Despite the therapeutic potential of FMT for the treatment of PD, several limitations still exist and need to be

addressed. Standard clinical protocols, delivery methods, periodicity, donor’s selection criteria, patient’s inclusion
criteria, long-term benefits and potential risks remain an issue [163][170|[185][186][187|[188][189] \Njjthin this context, 6

cases of adverse events occurred in human studies: flatulence (1), diarrhea (2), hospitalization under observation

(1) and Gl pain (2) [180181 Therefore, although not life-threatening, the nature of these complications should be

better investigated.
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