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The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut

microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of

neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of

motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis.

Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and

progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully

elucidated. 
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1. Gut Microbiota-Based PD Interventions: Antibiotics

Antibiotics are chemical compounds able to kill or arrest the growth of certain microorganisms. Although they are

mainly used to counteract or prevent bacterial infections, their additional anti-inflammatory, immunomodulator,

neuroprotective, antiamyloidogenic and antioxidant properties are becoming of increasing interest in the context of

neurological disorders, including neurodegeneration . Indeed, beside counteracting dysbiosis and

constipation , it has been demonstrated that certain antibiotics can inhibit the activity of matrix metalloproteinases

and prevent mitochondria dysfunction, microglia activation, protein misfolding and α-synuclein aggregation 

. For example, treating mice where Parkinson’s disease (PD) has been induced by MPTP with a cocktail of

broad-spectrum antibiotics (ampicillin, metronidazole, and neomycin sulfate) was found to preserve TH and

dopamine transporter immunoreactivities, which are generally lost upon MPTP administration . This beneficial

effect is mediated by an increase in Proteobacteria, as well as by a decrease in Deferribacteres and

Saccharibacteria (TM7) abundance, which reflect an altered gut microbiota (GM) composition characterized by

diversity loss . Similar results were obtained in 6-OHDA-induced PD rats upon chronic treatment with an

antibiotic mixture containing neomycin, pimaricin, bacitracin and vancomycin, which prevented dopaminergic

neuronal death, relieved inflammation, ameliorated neurotoxicity and reduced motor impairments as measured by

cylinder, rotation and stepping tests . Recently, Cui et al. reported that vancomycin pretreatment of MPTP-

induced PD mice improved motor symptoms by reducing SN astrocytes and microglia activation . Notably, the

authors proposed that neuroinflammation is indirectly inhibited by Akkermansia and Blautia, which increase in
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abundance upon vancomycin treatment and interfere with the toll like receptor 4 (TLR-4)/NF-κB pathway in the gut

and in the brain . Although Akkermansia is generally reported as harmful in PD patients, its dual negative and

positive role may lean towards the latter when mucin conversion into SCFAs prevails over gut-barrier degradation,

thus explaining this apparent discrepancy. In humans, an intestinal decontamination therapy consisting of sodium

phosphate enema, oral rifaximin and polyethylene glycol resulted effective in reducing dyskinesia and motor

fluctuations related to PD, but more studies are required . Other approaches focused on the use of certain

specific antibiotics instead of cocktails have also been proposed to maximize the therapeutic benefit without

impacting beneficial bacteria.

Rifaximin is a broad spectrum antibiotic with poor systemic absorption indicated to treat SIBO . In this

respect, rifaximin-mediated SIBO eradication in PD patients resulted in reduced motor fluctuations without

impacting on L-dopa treatment . This benefit should be ascribed to rifaximin-mediated modulation of the brain

thyrotropin releasing hormone (THR) and THR-like peptides, which have caloric-restriction-like, anti-aging,

neuroprotective properties and are known to be involved in the gut-brain axis . However, no improvement in GI

symptoms in 8 PD patients treated with rifaximin poses controversy over the actual efficacy of this antibiotic as PD

treatment, calling for new studies .

Ceftriaxone (CTX) is a β-lactam antibiotic with a strong and safe past record . The treatment of several PD

animal models with CTX is known to improve neuroinflammatory and oxidative stress markers, stimulate

neurogenesis and promote astrocyte viability through the suppression of NF-κB/c-Jun-mediated signaling 

. Mechanistically, CTX also reduces extracellular glutamate levels by increasing the expression of the glutamate

transporter-1 in astrocytes, thus avoiding brain excitotoxicity . Moreover, it has been observed that CTX

binds to α-synuclein with considerable affinity and prevents its polymerization in vitro . in vivo, there is

evidence that CTX treatment modifies the GM composition of MPTP-induced PD mice by disadvantaging the

growth of Proteus while increasing the relative abundance of Akkermansia species, which act as probiotics when

their SCFAs-converting activity exceeds that of intestinal barrier degradation  .

Further studies proved the ability of CTX to reduce the levels of the main pro-inflammatory mediators TLR-4,

MyD88 (myeloid differentiation primary response 88), IL-1β, TNF-α and NF-κB in the brain, TLR-4, MyD88, and

NF-κB in the colon and IL-1β, TNF-α and IL-6 in the serum . Similarly, CTX-mediated increase in the main

antioxidant modulators glutathione, superoxide dismutase (SOD) and catalase was found to prevent the oxidative

damage observed in rats treated with MPTP . In line with these data, CTX administration was associated with

reduced glial fibrillary acid protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1) expression, two

markers of astrogliosis and microglia activation, respectively . At the neuronal level, pre- or post-

treatment with CTX prevented the loss of TH-positive neurons, reduced glutamatergic hyperactivity, and promoted

neurogenesis at the level of SN and hippocampal dentate gyrus in different rat models of the disease 

. As a consequence, dyskinesia, motor impairment and memory loss were all reverted upon CTX

administration , although conflicting evidence still remains about its ability to improve

learning outcomes . Of note, CTX has been shown to interact synergistically with other compounds currently
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used or under investigation for the treatment of PD, such as erythropoietin, ropinirole and memantine, but the

safety as well as the efficacy of these combinations should be further assessed .

Minocycline is a second-generation semisynthetic tetracycline with anti-microbial, anti-apoptotic, anti-inflammatory

and antioxidant properties . Thanks to the ability to efficiently cross the BBB, minocycline is considered

neuroprotective for a variety of neurological conditions, including PD . This effect is mainly

ascribable to the minocycline-dependent suppression of microglia activation, which has been reported by several in

vivo studies . In this respect, microglial inactivation by minocycline correlates with decreased

IL-1β formation, as well as reduced NADPH-oxidase and inducible nitric oxide synthase (iNOS) activity, suggesting

that both anti-inflammatory and antioxidant pathways are involved . In vitro, minocycline addition to 6-OHDA

treated PC12 cells suppresses the release of lactate dehydrogenase, reactive oxygen species (ROS) and caspase

3 while supporting the activity of the antioxidant enzymes SOD and catalase . Of note, these molecular

changes seem to explain the increased striatal dopamine levels as well as the cognitive and locomotor

improvements observed in zebrafish, mouse, and rat models . Another mechanism through

which minocycline prevents apoptosis is by limiting mitochondria dysfunction, inhibiting caspase 1 and 3

expression, and preventing the degradation of the antiapoptotic protein ICAD (the inhibitor of the caspase-activated

deoxyribonuclease) . However, despite the promising results, controversy remains. Indeed, an

enhanced toxicity has been reported upon minocycline administration to MPTP-treated rodents and primates,

resulting in disease exacerbation . Moreover, results from a phase II clinical trial show no benefit from the use

of minocycline and evidence decreased tolerability, although more studies are needed before drawing premature

conclusions .

Doxycycline (DOX) is another broad-spectrum antibiotic belonging to tetracyclines that has been considered as PD

treatment . In vitro, DOX has shown anti-inflammatory properties by interfering with p38 MAP kinase and NF-κB

pathways, reducing the expression of the activated microglia marker IBA-1 and inhibiting the production of the pro-

oxidant and pro-inflammatory factors ROS, nitric oxide, iNOS, cyclooxygenase-2 (COX-2), IL-1β and TNF-α 

. Concerning neuroprotection, DOX exerts an anti-apoptotic activity by repressing the matrix metallopeptidase-3

(MMP-3) in dopaminergic neurons and microglia both in vitro and in vivo . In addition, DOX stimulates neurite

growth through the activation of PI3K/Akt and MAPK/ERK pathways, independently from nerve growth factor

activity . Of note, recent studies demonstrated that DOX reduces the size and load of α-synuclein oligomers by

converting them into high-molecular weight species that are not able to form fibrils, thus increasing cell viability 

. When tested in vivo, DOX confirmed its neuroprotective activity by limiting dopaminergic neuronal loss in SN

while increasing striatal dopamine levels . This beneficial function is achieved by contrasting glial reactivity

and by reducing the major histocompatibility complex-II expression in microglial cells . In 6-OHDA-treated

rats, both DOX and its derivative COL-3 showed an anti-dyskinetic potential when administered in combination with

L-dopa . According to the authors, the reduced levels of MMP-2/-9, MMP-3, ROS and of the dyskinesia-linked

immunoreactivity markers FOSB, COX-2, GFAP and OX-42 would explain these benefits . Nevertheless, despite

promising in vivo data, clinical evidence is still lacking.
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Rifampicin is a macrocyclic antibiotic with cytoprotective functions that have been considered for PD treatment 

. Indeed, there is evidence that rifampicin prevents α-synuclein fibrillation by promoting SUMOylation, which

increases fibril solubility preventing neuronal death . Other studies reported a reduction in IL-1β, TNF-α,

IL-6 and ROS released by cells double treated with rotenone and rifampicin, thus indicating a promotion of

neuroprotection . Although not completely defined, rifampicin appears to sustain cell viability through

different mechanisms: (i) by enhancing autophagy ; (ii) via PI3K/Akt/GSK-3β/CREB pathway modulation ;

(iii) by upregulating the unfolded protein response marker GRP78 through the PERK/eIF2α/ATF4 pathway . In

vivo, MPTP-induced PD mice treated with rifampicin showed increased striatal and SN TH immunoreactivity,

attenuated levels of oxidative stress and re-established dopaminergic signaling in the striatum . More recently,

rotenone-induced PD in zebrafish has shown benefit from rifampicin administration due to the decrease in

neuroinflammation .

Generally, although promising, two main concerns remain about the use of antibiotics in PD treatment: (i)

antibiotics can kill some specific microbial populations leading to intestinal dysbiosis and neurological dysfunction

and (ii) their prolonged and widespread intake would favor antibiotic resistance . There is evidence that

ceftriaxone (a third-generation cephalosporin)-induced dysbiosis worsens motor symptoms in 6-OHDA treated mice

and correlates with dopaminergic neuron toxicity as well as intestinal and systemic inflammation . Moreover,

quinolones and β-lactams are known to trigger neurotoxicity through their interference with gamma-aminobutyric

acid and benzodiazepine receptors signaling . Mechanistically, it has been hypothesized that antibiotic-induced

dysbiosis may favor the growth of Enterobacteria producing the bacterial α-synuclein curli, which promotes

neurodegeneration . In addition, leaky gut-mediated systemic inflammation might result from dysbiosis and

mediate the BBB damage, allowing circulating neurotoxins to enter the brain . In humans, a Finnish study

conducted on 13,976 PD and 40,697 healthy individuals showed that taking certain antibiotics years earlier,

especially macrolides and lincosamides, correlates with an increased risk of developing PD . However, results

from another prospective study involving 59,637 women did not report any correlation between antibiotic intake and

PD incidence . Overall, contrasting results and scarce long-term safety data remain a concern. Innovative drug

delivery systems based on nanoparticles are now being tested to improve the clinical benefit of these antibiotics

. At the same time, synthetic tailoring to potentiate the neuroprotective chemical functions over the antimicrobial

ones is another promising approach for the risk-benefit optimization .

2. Gut Microbiota-Based PD Interventions: Probiotics

Probiotics are defined as “live microorganisms that, when administered in adequate amounts, confer a health

benefit on the host” . It is widely reported that the most common bacteria used as probiotics (Lactobacilli,

Bifidobacteria, and Enterococci)  have potential benefits in restoring the GM, reducing intestinal permeability,

inflammation, and oxidative stress, improving immune homeostasis and GI symptoms (constipation, diarrhoea,

bloating, and abdominal pain), as well as preventing or counteracting several conditions, including GI, liver, and

cardiovascular diseases, obesity, diabetes, cancer, and H. pylori and urogenital infections .

Moreover, it is now evident that GM dysbiosis is a factor that takes part in the development of several neurological
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diseases, including PD, AD, multiple sclerosis, autism spectrum disorders (ASD), anxiety, depression,

schizophrenia, and other mental illnesses . Concerning PD, as previously mentioned, altered GM could

contribute to the onset of some PD-related complications, such as constipation, the most common non-motor

symptom . Therefore, modulation of the microbiota-gut-brain axis using probiotics could be a promising

complementary approach to traditional methods to prevent or counteract these disorders, including PD, as widely

reported in literature . For instance, Bacteroides fragilis has been documented to improve ASD

symptoms and gut barrier integrity, and reduce intestinal permeability ; further, the probiotic SLAB51, a

formulation of nine live bacterial strains (Streptococcus thermophilus, B. longum, B. breve, B. infantis, L.

acidophilus, L. plantarum, L. paracasei, L. delbrueckii subsp. bulgaricus, and L. brevis) improves cognition and

reduces the accumulation of amyloid plaques, brain injury, and inflammatory cytokines plasma levels in AD mice

, while the assumption of a probiotic fermented milk drink containing L. acidophilus, L. casei, B. bifidum, and L.

fermentum improves cognitive function in AD patients . Concerning PD, many studies showed that probiotic

intake can reduce neuroinflammation, inhibit the loss of dopaminergic neurons, and modulate brain functions.

3. Gut Microbiota-Based PD Interventions: Prebiotics

According to the International Scientific Association for Probiotics and Prebiotics (ISAPP), prebiotics are defined as

“substrates selectively used by host microorganisms that confer health benefits to the host, while retaining the

microflora-mediated health benefits” . Prebiotics are dietary fibres originated from soybeans, raw oats,

unrefined wheat and barley, non-digestible carbohydrates and oligosaccharides, including galacto-oligosaccharides

(GOS), fructo-oligosaccharides (FOS), inulin, and lactulose . Polyphenols (catechin, epicatechin and

quercetin) can also act as prebiotics . They can alter GM composition, by favouring the growth and the activity

of beneficial bacteria, and by decreasing pathogens in the GI tract; further, they have positive effects on lipid

metabolism, decrease the recurrence of Clostridium difficile infections, and alleviate GI and allergic disorders 

.

In the gut, the beneficial microbes metabolize the prebiotics, resulting in the generation of SCFAs (namely, acetate,

propionate, butyrate) that are involved in neuromodulation, in anti-inflammatory processes, in the regulation of both

intestinal and blood-brain barriers .

Like probiotics, prebiotics also play a beneficial role in managing neurological and neurodegenerative diseases

. For instance, lactulose and melibiose improve short-term memory and cognitive ability in AD mice ;

bimuno-GOS ameliorate anti-social behavior in children with ASD ; oral administration of Marinda officinalis-

derived oligosaccharides ameliorates memory and learning ability, decreases plaque formation, oxidative stress,

and inflammation in both rats and mice AD models .

Concerning PD, to date, few studies have been conducted to evaluate the effects of prebiotics on PD animal

models and patients (Table 1) . In a mouse model of PD, Perez–Pardo et al. found that

prebiotic fibers (FOS, GOS and nutriose, a soluble corn fibre) can normalize motor symptoms, reduce α-synuclein

levels, and restore GI dysfunction, inflammation and dopamine transporter expression ; further, it has been
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shown that the prebiotic polymannuronic acid can prevent dopaminergic neuronal loss via SCFAs-mediated anti-

inflammatory and anti-apoptotic mechanisms . In addition, another study, performed by using 6-OHDA PD rat

model, reported that the supplementation with the medium obtained from the probiotic L. salivarius subsp.

salicinium AP-32 culture can reduce dopaminergic neuronal loss, motor dysfunctions, muscle atrophy, oxidative

stress (increased SOD and GPx) and inflammation . Interestingly, another study highlighted a raise in

BDNF levels in the hippocampus of rats after the administration of FOS and GOS . Since BDNF is involved in

neuronal protection, survival, growth, and in synaptic plasticity , this finding suggests that prebiotics

supplementation might have a role on brain neuroprotection. Finally, some studies performed in PD animal models

report the beneficial effects of sodium butyrate in improving PD symptoms ; therefore, butyrogenic

prebiotics could be used to increase butyrate concentration in the colon and help to manage PD .

Table 1. The effects of prebiotics treatment regarding in vivo experimental studies.
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Prebiotic Experimental
Model

Treatment
Duration Treatment Effects Reference

GOS, lcFOS, scFOS,
nutriose

Rotenone-
induced mice

model
10 weeks

Improvement of motor
symptoms, gastrointestinal

dysfunction, and inflammation
(↓GFAP, ↓T-cells infiltration).

Restoration of DAT expression.
Reduction of α-synuclein levels.

(Perez-
Pardo et al.,
2017) 

Polymannuronic acid
MPTP-
induced

model mice
5 weeks

Abolition of the apoptotic
process (↓Bax, ↓Bax/Bcl-2

ratio).
Prevention of dopaminergic

neuronal loss (↑TH gene and
protein expression in the

striatum).
Increase of faecal acetate,
butyrate, and total SCFAs

levels.
Inhibition of striatal

inflammation (↓TNF-α mRNA
levels).

(Liu et al.,
2022) 

Prebiotic residual medium
obtained from L. salivarius
subsp. salicinium AP-32

culture medium

6-OHDA-
induced rat

model
8 weeks

Reduction of dopaminergic
neuronal loss, motor

dysfunctions, and muscle
atrophy.

Increase of GPx and faecal
SCFAs (propionate, butyrate).
Restoration of mitochondrial

function and energy
metabolism.

(Nurrahma
et al., 2021)

Prebiotic residual medium
obtained from L. salivarius

6-OHDA-
induced rat

8 weeks Amelioration of motor
symptoms.

(Tsao et al.,
2021) 
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Abbreviations: 6-OHDA: 6-hydroxydopamine; Bax: Bcl-2 associated X; Bcl-2: B-cell lymphoma 2; DAT: dopamine

transporter; GFAP: glial fibrillary acid protein; GM: gut microbiota; GOS: galactooligosaccharides; GPx: glutathione

peroxidase; lcFOS: long-chain fructooligosaccharide; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; OS:

oxidative stress; PD: Parkinson’s disease; ROS: reactive oxygen species; SCFAs: short chain fatty acids; scFOS:

short-chain fructooligosaccharides; SOD: superoxide dismutase; TH: tyrosine hydroxylase; TNF-α: tumor necrosis

factor-alpha; ↑: increase; ↓: decrease.

In patients, two studies reported the effects of insoluble fibers on constipation. Indeed, both Astarloa et al., by

administering wheat, pectin, and dimethylpolyoxyhexane-900, and Ashraf et al., by using psyllium, found a

significant improvement in constipation . Finally, another study investigated the effects of an oral

supplementation with resistant starch, whose fermentation by anaerobic bacteria leads to the production of SCFAs,

finding an increased butyrate concentration, as well as an improvement in non-motor symptoms .

In conclusion, despite few studies on PD, the satisfactory clinical outcomes on patients, especially on constipation,

suggest that prebiotics might be a possible adjuvant therapy for PD, although more human clinical trials are

mandatory to support this conclusion.

4. Gut Microbiota-Based PD Interventions: Diet

Although multifactorial interactions are involved in the prevalence and incidence of neurodegenerative diseases,

nutrition plays an essential role in the pathogenesis and development of neurodegenerative diseases such as AD

and PD . Recent findings have revealed that diet, as a non-pharmacological element, plays an important

role not only as a risk factor but also as a potential therapeutic approach for treating PD (Table 2) 

. The effects of diet intervention on PD development can be

attributed to different mechanisms. First, by altering intestinal microbiota composition and consequently affecting

the gut-brain axis or by directly interfering with immune cells. As a matter of fact, diet is probably the most

influential factor in determining the structure and metabolic function of the intestinal microbiota. Moreover, dietary

components might also modulate the chronic inflammatory response that is associated with aging. Intriguingly, diet

components can reduce constipation and improve L-dopa uptake, which is the first-line therapy for PD .

Therefore, consuming a constant diet on a long-term basis can impact the development of PD; however, it is still to

Prebiotic Experimental
Model

Treatment
Duration Treatment Effects Reference

subsp. salicinium AP-32
culture medium

model Reduction of inflammation
(↓TNF-α) and OS (↓ROS,

↑SOD, ↑GPx).
Increase of SCFAs production

(propionate, butyrate).
Modulation of GM composition

(↑Ruminococcaceae,
↑Bifidobacterium,

↑Faecalibacterium,
↓Propionibacterium,

↓Clostridium, ↓Cylindriodes,
↓Ruminantium).

Dietetic fiber supplements
(wheat, pectin,

dimethylpolyoxyhexane-900)

19 PD
patients

8 weeks

Improvement in constipation
and in motor function.

Increase of total plasma
levodopa levels.

(Astarloa et
al., 1992)

Psyllium 7 PD patients 8 weeks
Increase in stool frequency and

weight.

(Ashraf et
al., 1997)

Resistant starch
57 PD

patients
8 weeks

Improvement of non-motor
symptoms.

Reduction of calprotectin levels.
Increase in butyrate

concentration.

(Becker et
al., 2021)
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be elucidated as to how a particular diet reduces the risk of this development. Here, the researchers discuss how

changes in diet may prevent or modify PD progression, with a special focus on Mediterranean, ketogenic, and

omega-3-rich diets.

Table 2. The effects of dietary interventions in PD clinical trials.

Reference Type of
Study

Type of Dietary
Intervention Aim Outcomes

Metcalfe-
Roach et al.,

2021 
CrS MIND or Medi

MIND/Medi vs. PD
onset

Both diets delay PD onset; MIND
slightly superior in the female

subgroup.

Paknahad et
al., 2020 

CT Medi
Medi vs. cognitive

function

Improvement in executive
function, language, attention,

concentration, active memory and
in the total score of cognitive

assessment.

Rusch et al.,
2021 

CT Medi Medi vs. GI function

Correlation with weight loss,
improved constipation, and

modified gut microbiota in PD
patients.

Cassani et al.,
2017   Medi

Medi vs. PD
progression

No significant correlation.

Maraki et al.,
2019 CS Medi Medi vs. PD onset

Correlation with lower probability
of prodromal PD in older people.

Zamzam
Paknahad et
al., 2022 

CT Medi

Medi vs. total
antioxidant capacity

(TAC) and PD
severity

Improvements in TAC and PD
severity.

Alcalay et al.,
2012 CCS Medi Medi vs. PD status

Medi adherence is associated
with PD age at onset.

Strikwerda et
al., 2021 CS Medi, Dutch diets

Medi, Dutch diets
vs. PD risk

Protective effect.

Yin et al.,
2021 CS Medi Medi vs. PD risk Protective effect.

Agarwal et al.,
2018 

LS MIND
MIND vs. PD

development and
progression

Decreased risk and slower
progression of PD in older adults.

Lawrie et al.,
2022 CrS MIND

MIND vs. PD
severity

Decreased fatigue and
depression.
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Abbreviations: CCS: case-control study; CrS: cross-sectional study; CT: controlled trial; KD: ketogenic diet; LS:

longitudinal study; Medi: Mediterranean diet; MIND: Mediterranean-DASH diet intervention for neurodegenerative

delay; PUFAs: polyunsaturated fatty acids; UPDRS: Unified Parkinson’s Disease Rating Scale; VHI score: voice

handicap index; * VHI is patient-rated scale developed to assess the level of disability experienced by patients

affected by various voice disorders.

5. Gut Microbiota-Based PD Interventions: Fecal Microbiota
Transplantation

Fecal microbiota transplantation (FMT) consists in the transfer of resuspended and filtered stool material from a

healthy donor to a patient’s gut. The aim of this approach is to counteract dysbiosis while favoring the

establishment of a beneficial and balanced microbiota . Although colonoscopy is the preferred method of

transplantation, delivery through nasogastric or nasojejunal tube, enema, or orally administered capsules have also

been tested . Following the successful use of FMT in the treatment of refractory or recurrent Clostridium

difficile infection, several studies have been conducted to explore FMT as a therapeutic strategy for a wide range of

neurological disorders, including multiple sclerosis, epilepsy, ASD, Tourette syndrome, diabetic neuropathy, AD and

PD, with promising preclinical and clinical data . Concerning PD, consistent preclinical studies

and a handful of human case reports have shown that FMT might be exploited to reduce motor and non-motor

symptoms, as well as constipation, at least in the short term  (Table 3).

Early evidence came in 2016 from the work of Sampson et al., who first reported that the transfer of fecal matter

from human PD patients to α-synuclein overexpressing mice substantially worsened their physical symptoms in

comparison with mice receiving feces from healthy human donors . These results were then confirmed in 2018,

when Sun et al. showed that fecal microbiota transfer from PD mice to their healthy counterpart increases motor

deficits while reducing the striatal levels of the neurotransmitters dopamine, serotonin and their metabolites, thus

reproducing the typical features of the disease . Conversely, fecal matter transplantation from healthy mice to

PD recipient mice improved physical performance, ameliorated motor symptoms and reduced dysbiosis in several

independent studies . Looking at the GM composition, there is evidence that FMT re-establishes

eubiosis by disadvantaging the growth of Desulfovibrio, Akkermansia and Proteobacteria (orders Enterobacteriales

and Turicibacteriales), while simultaneously favoring the proliferation of beneficial bacteria such as Bacteroidetes

and Actinobacteria phyla, with a particular effect on Blautia and Prevotella species . Moreover, FMT

appears to protect from gut inflammation by promoting intestinal barrier integrity and reducing the levels of LPS in

the colon, serum, and SN, therefore preventing leaky gut and systemic inflammation . At the brain level, FMT

contrasts cognitive damage by decreasing α-synuclein expression and restoring the optimal levels of the striatal

neurotransmitters dopamine and serotonin, thus supporting neuroprotection . Notably, decreased

neuroinflammation following FMT has been reported by numerous preclinical studies . This

beneficial effect should be ascribed to the ability of GM to modulate microglia and astrocyte activation in SN by

regulating the TLR4/NF-κB pro-inflammatory pathway and reducing the expression of GSK3β, iNOS and IL-1β,

which are implicated in PD pathogenesis and progression .

Reference Type of
Study

Type of Dietary
Intervention Aim Outcomes

Koyuncu et al.,
2021 

  KD
KD vs. PD patients

voice quality
VHI * score improvement

VanItallie et
al., 2005 

Feasibility
study

KD
KD vs. PD

progression
UPDRS scores improvement.

Phillips et al.,
2018 CT

KD vs a low-fat,
high-

carbohydrate diet

KD vs. PD
progression

Motor and nonmotor symptoms
improvement.

Tidman et al.,
2022 

CT KD
KD vs. PD

progression
UPDRS scores improvement.

[157]

[158]

[159]

[160]

[164][165]

[164][166]

[167][168][169][170][171]

[168][172][173][174][175][176][177][178][179][180][181]

[172]

[173]

[173][174][175][176]

[173][174][176]

[174]

[173][175][177]

[173][174][175][176]

[173][174][175][176][182][183][184]
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Table 3. Preclinical and clinical studies on the use of fecal microbiota transplantation for Parkinson’s disease.

Ref. Study
Cohort Study Groups Donor Recipient Experimental

Procedure Results Adverse
Events

Zhao et
al., 2021 Mice

Controls (n =
15), rotenone
(n = 15) and
rotenone +

FMT (n = 15)

Control
mice

Rotenone-
induced PD

mice

Oral gavage
(100 μL
bacterial

suspension)
daily for 2

weeks

↓ Dysbiosis
↓ Motor symptoms

↑ Intestinal barrier and
BBB integrity
↓ Systemic

inflammation
↓ Neuroinflammation

(SN)
↓ LPS (serum, colon

and SN)
↓ TLR4/NF-κB pathway

(colon and SN)

N.A.

Sun et
al., 2018 Mice

Controls (n =
15), MPTP +
PBS (n = 15)
and MPTP +
FMT (n = 15)

Control
mice

MPTP-induced
PD mice

Gavage (200
μL bacterial
suspension

containing 10
CFU/mL) daily

for 7 days

↓ Dysbiosis
↓ Fecal SCFAs

↓ Motor symptoms
↑ DA and 5-HT

(striatum)
↓ Microglia and

astrocyte activation
(SN)

↓ TLR4/TNF-α pathway
(gut and brain)

N.A.

Zhong et
al., 2021 Mice

Controls + PBS
(n = 10),

controls + FMT
(n = 10), MPTP
+ PBS (n = 10),
MPTP + FMT

(n = 10)

Control
mice

Controls or
MPTP-induced

PD mice

Gavage (200
μL bacterial
suspension

containing 10
CFU/mL) daily

for 7 days

↓ Motor symptoms
↓ Fecal SCFAs
↓ α-syn (SN)

↓ Microglia activation
(SN)

↓ TLR4/NF-κB pathway
(striatum and SN)

N.A.

Zhang et
al., 2021 Mice

Controls (n =
3), MPTP (n =
3) and MPTP +

FMT (n = 3)

Control
mice

MPTP-induced
PD mice

Transplantation
with 200 μL

bacterial
suspension

(containing 10
CFU/mL) daily

for 2 weeks

↓ Neuroinflammation
(SN)

↓ Motor symptoms
↑ Blautia

↓ Anaerostipes,
ASF356,

Ruminococcus and
Bifidobacterium
↓ Microglia and

astrocyte activation
(SN)

↓ IL-1β, iNOS, GSK3β
and p-PTEN (SN)

N.A.

Zhou et
al., 2019

Mice Mice pre-
treated with

Control
mice or

MPTP-induced
PD mice pre-

Gastric gavage
(200 μL

↑ DA and 5-HT
(striatum) in PD-NF

N.A.

[174]

[173]
8

[175]
8

[176] 8
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Nevertheless, FMT studies involving humans are still limited. One case study conducted in 2019 by Huang et al.

investigated the potential therapeutic benefit of FMT in a 71-year-old male PD patient reporting constipation (>3

years) and motor symptoms (for 7 years). While FMT successfully promoted regular defecation, tremor

disappeared only temporarily and then reappeared two months after transplant . Three subsequent studies

involving 6, 11 and 15 PD patients, respectively, confirmed the reduction in constipation, as well as in motor and

non-motor symptoms following FMT, as indicated by the decreased scores registered in various PD assessment

tests .

On the whole, from a clinical point of view, better and longer-term outcomes were obtained using colonoscopy

compared to nasointestinal delivery . In line with preclinical data, PD patients undergoing FMT showed an

increased presence of Blautia and Prevotella and a diminished overall abundance of Bacteroidetes, thus

confirming the efficacy of this approach in modifying the GM composition .

Despite the therapeutic potential of FMT for the treatment of PD, several limitations still exist and need to be

addressed. Standard clinical protocols, delivery methods, periodicity, donor’s selection criteria, patient’s inclusion

criteria, long-term benefits and potential risks remain an issue . Within this context, 6

cases of adverse events occurred in human studies: flatulence (1), diarrhea (2), hospitalization under observation

(1) and GI pain (2) . Therefore, although not life-threatening, the nature of these complications should be

better investigated.

Ref. Study
Cohort Study Groups Donor Recipient Experimental

Procedure Results Adverse
Events

MPTP and
antibiotics,

divided in PD-
PBS (n = 8),

PD-NA (n = 8),
PD-NF (n = 8)
and PD-NF/HK

(n = 8)

control
mice

undergoing
FMT

treated with
antibiotics

bacterial
suspension

containing 10
CFU/mL) daily

for 7 days

mice
↑ Neuroprotection in

PD-NF mice

Sampson
et al.,

2016 
Mice

GF + FMT from
SPF control
mice, GF +

FMT from PD
patients, GF +

FMT from
healthy patients

Human PD
patients (n

= 6),
human
healthy

controls (n
= 6) or
SPF

control
mice (n =

3)

α-syn-
overexpressing

mice
Oral gavage

In GF + PD-FMT mice:
↑ Physical impairment

↑ Proteus, Bilophila
and Roseburia

↓ Lachnospiraceae,
Rikenellaceae,

Peptostreptococcaceae
and Butyricicoccus

↓ Acetate
↑ Proprionate and

butyrate

N.A.

Huang et
al., 2019

Human
(case report)

PD patient
presenting
tremor for 7
years and

constipation
(>3 years)

26 y.o.
healthy
male

71 y.o. male
PD patients

Colonoscopy
(200 mL of

fecal
microbiota

suspension)
daily for 3 days

↓ Tremor (no tremor for
2 months)

↓ Constipation
↑ α-diversity

↓ UPDRS score 1 week
after FMT

No

Kuai et
al., 2021

Humans
(prospective
single study)

PD patients

Frozen
fecal

microbiota
from the
China

fmtBank

PD patients (n
= 11)

Intra-intestine
transplantation
of 40–50 mL of

frozen fecal
microbiota

resuspended in
200 mL saline

solution

↑ Blautia and
Prevotella

↓ Bacteroidetes
↓ H-Y, UPDRS and

NMSS scores
↓ Wexner constipation
and PAC-QOL scores

No

Xue et
al., 2020 Humans

PD patients +
FMT (via

colonoscopy, n
= 10;

nasointestinally,
n = 5)

5 Healthy
donors

(mean 22
y.o., 3

males and
2 females)

PD patients

Colonoscopy
or

nasointestinal
administration

↓ PSQI, HAMA, PDQ-
39, HAMD, UPDRS-III

and NMSQ

5 cases:
diarrhea (n =
2), abdominal
pain (n = 2)

and flatulence
(n = 1)

Segal et
al., 2021

Humans
(uncontrolled
case series)

6 PD patients
with symptoms

for 5 years
(mean).

2 healthy
donors

(males, 38
and 50

y.o.)

6 PD patients
with

constipation
(mean 52 y.o.),
3 males and 3

females

Colonoscopy
(300 mL of

fecal
suspension)

↓ Motor and non-motor
symptoms

↓ Constipation

1 case
requiring

hospitalization
for

observation

[177]

8

[172]

[178]

[179]

[180]

[181]

[178]

[179][180][181]

[180]

[179]

[165][170][185][186][187][188][189]

[180][181]
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Abbreviations: α-syn: α-synuclein; BBB: blood-brain barrier; CFU: colony forming units; DA: dopamine; FMD:

fasting mimicking diet; FMT: fecal microbiota transplantation; GF: germ-free;GSK3β: glycogen synthase kinase-3

beta; H-Y: Hoehn and Yahr scale; HAMA: Hamilton anxiety scale; HAMD: Hamilton depression rating scale; 5-HT:

serotonin;IL-1β: interleukin 1 beta; iNOS: inducible nitric oxide synthase; LPS: lipopolysaccharide; MPTP: 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells;

NMSQ: non-motor symptoms questionnaire; NMSS: non-motor symptoms scale; p-PTEN: phosphorylated PTEN;

PAC-QOL: patient assessment of constipation quality of life questionnaire; PBS: phosphate buffered saline; PD-

NA: MPTP-induced PD mice treated receiving FMT from control mice; PD-NF: MPTP-induced PD mice treated

receiving FMT from control mice undergoing FMD; PD-NF/HK: MPTP-induced PD mice treated receiving heat

inactivated FMT from control mice undergoing FMD; PD-PBS: MPTP-induced PD mice treated receiving PBS; PD:

Parkinson’s disease; PDQ-39: Parkinson’s Disease Questionnaire; PSQI: Pittsburgh sleep quality index; SCFAs:

short chain fatty acids; SN: substantia nigra; SPF: specific pathogen free; TLR4: toll like receptor 4; TNF-α: tumor

necrosis factor α; UPDRS: unified Parkinson’s disease rating scale; y.o.: years old; ↓: decrease; ↑: increase.

In addition, randomized controlled trials involving a considerable number of patients are required to better assess

feasibility, therapeutic efficacy, safety and long-term benefits of this promising GM-modifying approach .
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