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Deep learning models based on convolutional neural networks (CNN) have had a lot of success in various

computer vision fields, such as recognizing faces, identifying pedestrians, detecting text in images, and tracking

targets. Additionally, these models are used in a wide range of industrial settings for defect detection.

defect detection  surface defect detection  defect detection for X-ray images  defect recognition

deep learning

1. Deep Learning Surface Defect Detection Methods for
Industrial Products

Deep learning has become increasingly popular in the field of defect detection due to its rapid development. This

section summarizes the state of research on inspection of industrial products for detecting surface defects.

Learning-based approaches are classified as supervised, semi-supervised, and unsupervised. The performance of

learning-based methods is best optimized when large datasets are provided. In particular, supervised techniques

perform well when there are sufficient examples of each class in the dataset.

1.1. Supervised

Supervised detection requires large datasets of defect-free and defective samples labeled in a training set. Since

all the training data is labeled, detection rates can be very high. It must be noted, however, that supervised

detection may not always the most effective approach due to the imbalance of classes in the datasets. There are a

number of datasets that supervised learning methods use, including the fabric dataset , rail defect dataset , and

railroad dataset .

Deep neural networks and feature extraction and classification methods used in supervised methods differ in their

structures. For example, detecting cross-category defects without retraining was proposed using a two-layer neural

network in the literature . Based on structural similarities between image pairs, the method learns differential

features, which may result in some structural similarities among different classification objects. This method has

been shown to be able to detect defects in different types of factories based on experiments in real factory

datasets. Literature  suggests that the composition of kernels is more important than the number of layers when it

comes to detection results. To detect small defects and textures in surface images, it is necessary to use a sample
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image that is large enough for computational accuracy and reducing the cost of the network. ShuffleNet uses

convolution of pointwise groups and channel shuffle as two new techniques to achieve this goal. Literature 

proposes a novel in-line inspection system for plastic containers based on ShuffleNet V2. The system can be used

to inspect images on complex backgrounds as well. In , they proposed ShuffleDefectNet, a deep-learning-based

defect detection system that achieved 99.75% accuracy on the NEU dataset.

Reference  suggested that shallow CNN networks can be used to identify anomalies. To train the model, only

negative images are used and the research employs full-size images. The argument is that it is not necessary to

have full-size examples of both defective and defect-free samples, as the negative samples already have pixels

that correspond to the defect-free regions. Based on the Fast R-CNN model, Faster R-CNN introduces a region

proposal network (RPN), which enables an end-to-end learning algorithm. This leads to a near-costless regional

recommendation algorithm that significantly improves the speed of target detection. Faster R-CNN was used in 

to detect PCB surface defects, a new network was proposed combining ResNet50, GRAPN residual units, and

ShuffleNetV2. Using a cascaded RCNN structure, as described in literature , the defect detection problem of

power line insulators can be changed into a two-level target detection problem.

In limited hardware configurations, MobileNet-SSD  improves real-time object detection performance. There is

no need to sacrifice accuracy for the reduction of parameters in this network. An SSD network classifies regression

and boundary box regression using various convolution layers. Translation invariance and variability are resolved in

this model, resulting in good detection precision and speed. Object detection is effective when defects have regular

or predictable shapes . Additional preprocessing steps can be applied to more complex defect types. Fully

Convolutional Networks (FCNs) use all convolutional layers as network layers; label maps can be directly derived

using pixel-level prediction. To achieve accurate results, a deconvolution layer with larger data sizes is used. In

literature , FCN and Faster R-CNN were combined to develop a deep learning model that could detect stains,

leaks, and pipeline blockages in tunnels. A method for segmenting defects in solar cell electroluminescence

pictures was presented in . A defect segmentation map was obtained in one step by combining FCN with a

specific U-net architecture.

1.2. Unsupervised

Research has begun to explore unsupervised methods to overcome the disadvantages of supervised methods. By

learning the inherent characteristics of the input training data, the machine can learn some of its own

characteristics and connections when there is no label information and automatically classifies the input training

data based on the pattern of these unlabeled data . It automatically classifies these unlabeled data based on

inherent characteristics and connections between the data. Methods based on reconstruction and embedding

similarity are the most commonly used to detect surface defects among unsupervised learning methods.

Reconstruction-based methods such as autoencoders (AEs) and Generative Adversarial Networks (GANs) are

most commonly used. Popular algorithms include PaDIM , SPADE  PatchCore , etc. In , an algorithm

based on DBN was proposed for detecting defects in solar cells. Both training and reconstructed images were used

as supervision data by the fine-tuning network of the BP algorithm. Literature  proposed a multi-scale
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convolutional denoising autoencoder with high accuracy and robustness that synthesizes the results of multiple

pyramid levels.

A SOM-based detection method was proposed in  for determining the difference between normal and defective

wood. The first stage involves detecting suspected defect areas, and the second stage involves separately

inspecting each defect area. A detection method that uses GANs was proposed in reference . The method is

divided into two stages: first, a generative network and a learning mechanism based on statistical representation

are used to detect new areas. In the second stage, defects and normal samples are directly distinguished using the

Frechet distance. The solar panel dataset was used to test the method, and it achieved 93.75% accuracy.

A multiscale AE with fully convolutional neural networks has been proposed , in which each FCAE sub-network

directly obtains the original feature image from the input image and performs feature clustering. Utilizing a fully

convolutional neural network, the residual images were combined to create the defect image. PatchCore,

introduced in literature , is a technique for identifying and isolating abnormal data in scenarios where only

normal examples are available. It balances the need to retain normal context through memory banks of patch-level

features extracted from pre-trained ImageNet networks and minimize computational time via coreset subsampling

to create a leading system for cold-start image anomaly detection and localization that is efficient on industrial

benchmarks. On MVTec, the algorithm demonstrated an AUROC of over 99%, while also being highly efficient in

small training set scenarios. Literature  presented a GAN-based surface vision detection framework that uses

OTSU to segment fusion feature response maps and fuses the responses of the three layers of the GAN

discriminator. The framework has been proven effective on datasets of wood cracks and road cracks. 

1.3. Semi-Supervised

As a result of combining the properties of supervised and unsupervised methods, semi-supervised methods are

developed. Only normal samples are used as training data for semi-supervised defect detection and a defect-free

boundary is learned and set, and any samples outside the boundary are considered anomalous. Since there are

few defective samples to be obtained, the method is extremely useful. Nevertheless, this method has lower

accuracy in defect detection compared to supervised methods. Unlabeled sample data can be automatically

generated by semi-supervised methods without manual intervention.

A framework for identifying defects in PCB solder joints was proposed in literature , which utilizes a combination

of active learning and self-training through a sample query suggestion algorithm for classification. The framework

has been demonstrated to improve classification accuracy while reducing the need for manual annotations. A semi-

supervised model of convolutional autoencoder (CAE) and generative adversarial network is proposed in . After

training with unlabeled data, the stacked CAE’s encoder network is retained and input into the SoftMax layer as a

GAN discriminator. Using GAN, false images of steel surface defects were generated to train the discriminator. For

the detection of steel surface defects, literature  developed a WSL framework combining localization networks

(LNets) and decision networks (DNets), with LNets trained by image level labels and outputs a heat map of

potential defects as input to DNets. Through the use of the RSAM algorithm to weight the regions identified by
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LNet, the proposed framework has been demonstrated to be effective on real industrial datasets. The application

prospects for weakly supervised methods are also wide because the methods simultaneously combine advantages

of both supervised and unsupervised methods. There are few weakly supervised methods for detecting surface

defects in industrial products. The literature  proposed a deep learning algorithm to learn defects from a variety

of defect types with an unbalanced training sample pool for PCBA manufacturing products. In this method, an

overall defect recognition accuracy of 98% is achieved in PBCA images using a novel batch sampling method and

the sample weighted cost function.

A semi-supervised learning system that generates samples to detect surface defects was proposed according to

the literature . As part of the semi-supervised learning part, two CDCGAN and ResNet18 classifiers were used,

and the NEU-CLS dataset was used to compare the two classifiers. In this way, supervised learning and transfer

learning are both shown to be inferior to the method. A convolutional neural network structure based on residual

network structures was proposed in  by stacking two layers of residual building modules together, resulting in a

43-layer convolutional neural network, while at the same time by appropriately increasing the network width; a

more balanced network depth and network width can be obtained and accuracy can be improved. The network

structure shows good performance on the DAGM, NEU steel, and copper clad plate datasets.

2. Deep Learning Defect Detection Methods for X-ray Images
for Industrial Products

Non-destructive testing (NDT) is a method that uses radiography or ultrasound technologies to discover faults

without causing damage to the detected objects. It is widely used in engineering industries to detect and evaluate

defects in materials of all types.

An important technique in non-destructive testing is radiographic testing, which uses X-rays to identify and evaluate

flaws or defects, such as cracks or porosities. Defects can appear in X-ray images in many shapes and sizes,

making detection difficult. The images are often low contrast and noisy, making identification of defects difficult.

The traditional approach for identifying defects in industrial products is for human operators or experts to visually

inspect radiographs. However, this method can be subjective and prone to errors. Additionally, the process of

examining a large number of images can be time-consuming and may lead to misinterpretations. However, there

have been significant advancements in the field of defect detection in recent years, thanks to the emergence of

deep learning techniques. As a result, a number of methods for detecting defects have been proposed, which are

more efficient and reliable than the conventional approach. This section aims to provide a summary of current

research on industrial product defect detection methods using X-ray images. Specifically, it covers the use of deep

learning techniques such as convolutional neural networks and generative adversarial networks to analyze

radiographic images and identify defects with a high degree of accuracy. These methods have the potential to

reduce the subjectivity and human errors associated with the traditional approach, as well as the time required for

inspection. Additionally, they can be trained to improve over time with more data, making them more robust and

reliable.

[28]

[29]

[30]



Deep Learning Defect Detection Methods for Industrial Products | Encyclopedia.pub

https://encyclopedia.pub/entry/41434 5/9

A proposed system in literature  aimed to automate the process of inspecting and monitoring the condition of

machines in the hard metal industry by analyzing defects in real production samples. Three models were created to

analyze different types of data, a method called stacked generalization ensemble was applied and a random forest

classifier was utilized to combine and analyze the results of the microprofilometer and ultrasound models. The

fusion model was found to have improved performance and higher classification accuracy (88.24%) as compared

to the individual models. Additionally, the shop floor model was able to effectively identify breakdowns during the

manufacturing process and the ultrasound model was found to have better classification scores compared to the

VGG-19 model. According to literature , a three-stage deep learning algorithm was proposed for detecting

bubble patterns in engines. The algorithm consisted of training an autoencoder using normal images, fixing the

coefficients of the encoder, and training a fully-connected network using both normal and defective images. To

improve the performance of the network, the entire system was fine-tuned. According to , a CNN model was

designed with ten layers that belong to six grades for detecting defects in X-ray welding images. It was possible to

achieve 98.8% classification accuracy using CNN if the ReLU activation function was used for X-ray welding image

recognition. A real-time X-ray image analysis method using Support Vector Machines (SVMs) was presented in .

Using a background subtraction algorithm, all potential defects were segmented, and three features were

extracted, including the defect area, the grayscale average difference, and the grayscale standard deviation. In

order to distinguish non-defects from defects, the extracted features were input into an SVM classifier. A real-time

X-ray image defect detection method based on the proposed method reduced undetected defects and false

alarms. Another SVM-based method for detecting weld defects was described in . The training SVM is trained by

extracting three feature vectors from potential weld defects using grey-level profile analysis. In the last step, the

SVM is trained to differentiate between defects that are real and those that are potential. A high percentage of

correct detections could be achieved using the proposed method. For detecting insert molding in automotive

electronics, ref.  proposed a Yolov5-based DR image defect detection algorithm. Width and a window level are

adjusted in the preprocessing stage of the acquired data, and fast guided filtering is used for edge retention. Using

the overlap, tiny anomalies are detected, and a multi-task dataset is constructed. Using Ghost, which replaces the

standard convolutional network with the backbone network with enhanced features, the number of parameters can

be further reduced. Moreover, CSP-modules are embedded in the neck and backbone of the network to enhance

feature extraction. As a result of adding the transformer attention module after spatial pyramid pooling, over-fitting

can be avoided while computational effort can be reduced. DR data-based Yolo series target detection algorithms

are used as a final step to conduct consistent experiments. For detecting bead toe errors, ref.  proposed a

lightweight semantic segmentation network. An encoder extracts the texture features of different regions of the tire

in the network first. Then, to fuse the encoder’s output feature, a decoder is introduced. A reduction in the

dimension of the feature maps has allowed the positions of the bead toe to be recorded in the X-ray image. An

index of local mIoU (L-mIoU) is proposed to evaluate the final segmentation effect. YOLOv3_EfficientNet is used as

the backbone of the methodology instead of YOLOv3_darknet53. It results in a substantial improvement in

YOLOv3 mean average precision, as well as a substantial reduction in inference time and storage space. DR

image features are then used to enhance the data, thereby increasing the diversity of the clarity and shape of

defects. With depth separable convolution, models can be deployed on embedded devices with acceptable

accuracy loss ranges. A method was presented in  that utilizes deep learning with X-ray images to detect
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defects in aluminum casting parts used in automobiles, with the goal of improving the accuracy of both the

algorithm and data augmentation. The study found that using Feature Pyramid Networks (FPNs) resulted in a

40.9% increase in Mean of Average Precision (mAP) value, making it the most effective modification. Additionally,

using RoIAlign instead of RoI pooling in Faster R-CNN improved the accuracy of bounding box location. The study

also proposed various data augmentation methods to compensate for the limited availability of X-ray image

datasets for defect detection. The results showed that the mAP values for each data augmentation method

reached an optimal value and did not continue to increase as the number of datasets increased. Overall, the

proposed improvements to the Faster R-CNN algorithm resulted in better performance for X-ray image defect

detection of automobile aluminum casting parts. Using the Faster R-CNN detection model with X-ray preprocessing

was applied to the detection of tire defects in  to improve curve fitting performance. Faster R-CNN precision and

recall of defects were improved by adjusting its feature extractor, proposal generator, and box classifier. According

to literature , triplet deep neural networks can be used to detect weld defects. X-ray images are first

preprocessed into relief images to make defects easier to identify. Following that, a deep network is constructed

based on triplets, and a feature vector is obtained by mapping the triplets. The distance between similar defect

feature vectors and the distance between different types of defect feature vectors must be closer. The SVM is also

used for automatic detection and classification of weld defects. Based on the results of two experiments, the

proposed method is capable of effectively detecting multiple defects.
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