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Molecular Dynamics (MD) Simulations is increasingly used as a powerful tool to study protein structure-related

questions. Starting from the early simulation study on the photoisomerization in rhodopsin in 1976, MD Simulations

has been used to study protein function, protein stability, protein–protein interaction, enzymatic reactions and drug–

protein interactions, and membrane proteins.

molecular dynamics simulations  enhanced sampling techniques  membrane dynamics

1. Introduction

The essence of Molecular Simulations (MS) is a statistical mechanics and numerical method governed by the

Newtonian laws of motion  for molecular properties, i.e., velocity, position, and energy, towards insights of

molecular system while retaining macro-system physio-chemical properties. Two factors have promoted the

increased application of molecular simulations over the years (Figure 1). One is the growing availability of

experimentally determined protein structures, such as membrane proteins (ion channels, neurotransmitters and

GPCRs etc.) , the other is the wide availability of graphics processing units (GPUs), which allows running

simulations locally. MS typically analyses protein structure at a minimum of nano to micro-second time scale to

reveal the dynamic nature of protein molecules covering a wide variety of biomolecular processes, such as

conformational change, ligand binding and protein folding. Among the numerous approaches to MS, the Monte

Carlo (MC) Simulation sampling method and the molecular Dynamics (MD) Simulation method are the two

common methods. The basic concept of MCS is to generate an ensemble of conformation under specific

thermodynamics conditions through stochastic approach; whereas the concept of MD Simulation is to iterate a

time-dependent Newtonian equation of motions for hard sphere particles in a system , which can provide an

ensemble of thermodynamic properties.
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Figure 1. The growing use of MD Simulation studies over the years as reflected by publication (1980–2021). Data

was from Web of Science.

2. A Brief History of Molecular Simulations

MS was first introduced in 1949 by Metropolis et al. to study particle interaction . Metropolis proposed a

probabilistic approach to approximate the “properties” of a set of particles . Instead of treating particles as

individuals, simulation was applied to measure the interactions of all particles until they reach equilibrium by the

governing laws. Its success inspired the development of MS by Alder and Wainwright in 1959 . The early MS

algorithm used a rudimentary electronic computer to iterate atom collision. Each atom was assigned an initial

velocity and position. Based on the elastic collision, the MS algorithm was applied to simulate attraction and

repulsion of particles. In 1964, Rahman et al. published the first study in using MS to analyze liquid Argon . Their

work demonstrated that MS was indeed possible to analyze Lennard Jones potential for interactions between

Argon atoms. In 1971, Rahman and Stilinger reported their MS study on modelling liquid water, a system

composed of molecules not just atoms . Their work demonstrated that differing from its solid phases structure,

liquid water consists of a random network of hydrogen bonds. In 1976, Warshel and Levitt expanded MS by

integrating quantum mechanics and molecular mechanics (QM/MM) to study lysozyme reaction by proposing the

exchange of the classical charge of atom  i and  j with quantum mechanics calculations . In 1977, Karplus and

collaborators first used MS to study protein by using constraint method to freeze out fast-degree freedom to reach

[6]

[6]

[7]

[8]

[9]

[10]



Applications of Molecular Dynamics Simulation in Protein Study | Encyclopedia.pub

https://encyclopedia.pub/entry/26893 3/13

longer simulation time . Their study led to the Noble Prize in Chemistry awarded to Warshel, Levitt and

Karplus in 2013 for the development of multiscale models for complex chemical systems . Anderson et al. in

1980 used MS to sample the isoenthalpic (constant pressure) ensemble. Anderson’s solution to achieve constant

pressure in MD Simulation sampling was to extend dynamic variable by including volume . Parrinello and

Rahman showed that the scheme can be generalized to include shape and volume fluctuations by using

Lagrangian mechanics. This made it possible to study the issues such as crystallization and solid–solid phase

transition . Their idea of extending the system dynamic variables was to assume that the system exchanges

energy with a fictitious pressure or temperature reservoir. Their method took into consideration the dielectric effect

caused by the atomic polarizability and increased the accuracy of the binding site. In 1985, Car and Parrinello

pioneered a scheme of combining MS with direct calculation of electronic structure by means of Density Function

Theory (DFT). This work was important as it indicated the possibility of combining finite temperature into simulation

for electronic structure calculations, which was not possible before . During 1980s and 1990s, MS approach

witnessed a rise in studies of condensed matter with growing access of enhanced computing power; further leading

to the challenges of phase equilibria. Moreover, to address these challenges Panagiotopolus revised the MC

algorithm, known as Gibbs ensemble Monte Carlo, to distinguish the phase equilibria approach that only require to

simulate the involved phases but by-pass the interface . Novel algorithms such as  blue moon ensemble 

hyper-MD  as well as advanced theoretical methods such as Nudged-Elastic Band  and String  were

devised to address the challenges of time-scales (long-time dynamics of protein folding) and rare events. Further,

the advancement in quantum programs outside chemistry field and the Noble prize in Chemistry 1998 being

divided equally between Walter Kohn “for his development of density-function theory” and John A. Pople “for his

development of computational methods in quantum chemistry” led to form a unified approach for molecular

dynamics and density-function theory. Over the following years, time-dependent density-function theory (TDDFT)

further enhanced the accuracy of large-scale simulations of excited state dynamics . TDDFT-MD coupled

simulations to simulate excited state dynamics of biomolecules and other nanostructures achieves high accuracy

through utilizing small number of basic function thereby significantly reduced the memory requirements and

computation time compared to plane-wave and real-space grid bases . Furthermore, utilizing multiple computer

processors in parallel for MD force calculations substantially enhanced with IBM’s Blue Matter code for its Blue

Gene/L general-purpose supercomputer , resulting in improved parallel performances for the widely used MD

platforms NAMD  GROMACS  AMBER . Increasing innovation and with advent of GPU (Graphics

processing units) and special-purpose processors such as Anton (parallel supercomputer to enable fast MD

simulations) having computing power to perform up to 20 μs/day  further accelerated the simulation study in

different biochemical processes. However, long-timescale simulations requires stringent force field (discussed in

following section) compared with short-timescale simulations. To conclude this brief history of MS, it would be

appropriate to remark that MS has clearly established itself as a key scientific instrument driven by enhanced

computing power, fast and efficient algorithms and force fields (FF) are demonstrated by growing number of

publications utilizing both experiments and simulation tools. Major breakthroughs over the years in MS studies are

shown in Figure 2.
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Figure 2. The Molecular Simulations timeline showing the breakthrough achievements in MD Simulation studies.

3. Basic Concept of Force Field

Currently, it is a routine to simulate proteins with hundreds of amino acid residues at 10–100 ns surrounded by

water and salt . User-friendly platforms are widely available, i.e., GROMACS , AMBER , vCHARMM

, DL_POLY , NAMD , LAMMPS  have been developed for MD Simulations analysis. The output of the

platforms can be visualized and analyzed by external software, i.e., VMD , Chimera . However, robust

simulation requires appropriate parameters for studying a physical system. Force field, a set of mathematical

expressions and parameters to describe the inter- and intra- molecular forces, are also essential to describe a

physical system.

Three major molecular models have been developed: all-atom , coarse grained (CG)  and all-

atom/coarse-grain mixed models  (Table 1). The all-atom force field for MD Simulation of lipid bilayers

includes CHARMM, AMBER and OPLS-AA. GROMOS is an atomistic force field with an exception such as

CH  modelled as united-atoms . CHARMM (Chemistry at HARvard Macromolecular Mechanics) forcefield for

lipids is widely used for simulating lipid bilayer and membrane proteins . CHARMM force field is continuously

updating and improving with the most recent version of CHARMM36m . CHARMM36 lipid forcefield is

parameterized for lipids , CHARMM36 DNA and CHARMM36 RNA are parameterized for DNA and RNA ,

CHARMM36m is parameterized for protein, and CHARMM General Force Field (CGenFF) is parameterized for

drugs and general usage . AMBER (Assisted Model Building with Energy Refinement) forcefield was developed

in parallel. It treats all hydrogen atoms explicitly as CHARMM . AMBER was designed and parameterized for

specific biological systems: AMBER lipids 21 was parameterized for lipids ; AMBERff19SB was parameterized

for proteins ; AMBER OL15 and AMBER OL3 were parameterized for DNA and RNA ; General AMBER

forcefield (GAFF) was parameterized for drugs and general usage ; OPLS-AA (Optimized Parameters for Liquid

Simulations All Atom)  was initially designed for simulating thermo-dynamical properties of short-chain

hydrocarbons alkanes and later expanded to include lipids through a parameter set called OPLS/L , although the

availability of lipids in the OPLS/L forcefield has not been as diverse as that of CHARMM and AMBER-compatible

force fields. The latest improvement of OPLS-AA/M was its modification for peptides and protein torsional

energetics . The GROningen Molecular Simulation (GROMOS) forcefield utilizes a different approach for
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simulating analysis by fitting the parameters against experimental thermo-dynamic data. Its forcefield was

generalized into a single package. The latest version is GROMOS 54A8 package updated in 2012 .

Table 1. Atomistic and coarse-grained forcefield in MD Simulations.

Compared to all-atom models, coarse-grained models significantly reduce the computing time by decreasing the

number of particles explicitly during simulations. Over the last decade, coarse-grained model has also been widely

used in protein  and nucleic acid studies . Different coarse-grained models have been developed to extend

the timescale of the simulation, since the first model used the concept of coarse grain in 1975 by Levitt and

Warshal . One of the most popular models is the MARTINI for membrane proteins , in which several atoms in

protein and lipid are approximated as a single bead and four water molecules are treated as a single particle

[62]

No. Forcefield Drugs Lipid DNA & RNA Protein

1 GROMOS
GROMOS 43A1, GROMOS 45A3/4, GROMOS53A5/6, GROMOS54A7, GROMOS54B7,

GROMOS54A8

2 OPLS OPLS-AA OPLS-AA OPLS-AA/M OPLS-AA, OPLS-AA/L

3 CHARMM
CHARMM general

force field
(CGenFF)

CHARMM27 lipids,
CHARMM36 lipids

CHARMM27
DNA,

CHARMM27
RNA/DNA,

CHARMM 36
RNA, CHARMM

36 DNA

CHARMM22/CMAP,
CHARM27,

CHARMM36,
CHARMM36m

4 AMBER
General AMBER

force field (GAFF)
LIPID14, LIPID21

AMBER99 OL3,
AMBER99bsc,
AMBER OL15

AMBER94, AMBER96,
AMBER99,

AMBER99sb,
AMBER03,

AMBER14sb,
AMBER15ipq,
AMBER19sb

5 MARTINI

MARTINI 2,
MARTINI22,

MARTINI22p,
MARTINI 3,

MARTINI dry,
MARTINI

ELNEDYN22,
MARTINI

ELNEDYNP22

MARTINI 2,
MARTINI22,

MARTINI22p,
MARTINI 3,

MARTINI-Dry,
MARTINI

ELNEDYN22,
MARTINI

ELNEDYNP22

MARTINI 2015

MARTINI 2,
MARTINI22,

MARTINI22p, MARTINI
3, MARTINI dry,

MARTINI ELNEDYN22,
MARTINI ELNEDYNP22

6

Coarse-
grained

forcefield
models

(additional)

-

Electrostatics-
based model
(ELBA) 

protein-lipid CG
model 

PRIMONA, DMD,
NAST, ENMs,

oxRNA, SimRNA,
SPQR

Rosetta centroid (CEN),
UNRES, CABS, PRIMO,

AWSEM, SURPASS,
Scorpion, OPEP
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(known as one bead 4:1 mapping) although the beads can differ by their polarity or hydrophilicity. For particular

cases, smaller beads can also be used, such as 3:1 and 2:1 mapping . In MARTINI version 2.2, beads classified

into 18 types are categorized into four groups: Q (charged), P (polar), N (intermediate) and C (apolar). In the latest

version MARTINI 3, 29 beads have been sorted into seven groups with additional groups of halo-compounds (X),

divalent ions (D) and water (W) . MARTINI ELNEDIN model modified by utilizing an elastic network, with the

peptide backbone beads position on the Cα atoms and heavier bead mass, improves the conformation transition in

simulation . MARTINI-Dry version provides an implicated solvation model . The Born model is another model

where the effects of the solvent and membrane are included implicitly in the simulation . Implicit solvent

forcefield is less used as it can cause significant errors due to it smoothen energy landscapes, which causes

protein structure to deviate from the experimental crystal structure . Coarse-grained protein models have

been mainly used for analyzing protein folding mechanism and protein structure prediction . Every alternate

year, the CASP (Critical Assessment of Protein Structure Prediction) experiments provide an excellent platform to

test the performance of coarse-grained models for predicting structures . Several coarse-grained protein models

apart from MARTINI are as follows: UNRES (united residue) , AWSEM (associated memory, water mediated,

structure and energy model) , OPEP (optimized potential for efficient protein structure prediction) , SURPASS

(Single United Residue per Pre-Averaged Secondary Structure fragment)  and CABS (C-alpha, c-beta, side

chain)  models have been increasingly utilized for protein folding, structure prediction and interactions. PRIMO

 and Scorpion  (solvated coarse-grained protein interaction) models are increasingly used in peptide and

small protein structure prediction and protein–protein solvated complexes. The Rosetta centroid mode (CEN)

model developed by Rohl et al. is also one of the widely used coarse-grained protein models in CASP protein

structure prediction, de novo blind predictions, protein–protein and protein–ligand docking and modelling of protein-

DNA interaction . Coarse-grained models have been further utilized in nucleic acid molecular dynamics to

analyze the three dimensional (3D) structural models of RNA . Ding et al. introduced the discrete

molecular dynamics (DMD) utilizing coarse-grained model to rapidly explore the conformational folding of RNA

molecules . Recently, Jonikas et al. have developed a fully automated coarse-grained model NAST (the nucleic

acid simulation tool) using statistical potential capable enough to ensemble over 10,000 RNA plausible (3D)

structures .

4. Molecular Simulations in Protein Study

The importance of MS arises from the fact that biomolecules such as proteins are under a dynamic state of motion,

which is essential for the function of biomolecules. Although multiple experimental techniques can reveal the

structural features of biomolecules, they are often incapable to show the dynamic features. MS provides a means

to model the flexibility and conformational changes in the biomolecule at atomistic level, which is difficult to achieve

by experimental approaches . MS is more effective when combined with experiments to validate and improve

the accuracy of experimental results. A key feature of MS is its ability to mimic both the in vitro and in vivo

conditions, for example, at different pH conditions, in the presence of water and ions, at different salt or ionic

concentrations, and in the presence of a lipid bilayer and other cellular components . MS has been used to
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study multiple protein-related issues, such as protein-binding, protein–protein interaction and signaling . The

followings are examples.
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