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Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes

to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they

carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions

in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of

the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in

organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied.

Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and

stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL,

the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia

pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about

R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.

Pichia pastoris  biocatalysis  lipase  biodiesel  flavour  structured lipid  enzyme

Rhizopus oryzae  immobilisation  biotechnology

1. Introduction

Rhizopus oryzae is broadly employed in industry because it can carry out the synthesis of a great variety of

products like organic acids (lactic and fumaric acids), volatile compounds and enzymes (cellulases, proteases,

tannases, xylanasas, pyruvate decarboxylases, lipases etc.,) . Concretely, according to Web of Knowledge

data, R. oryzae lipase (ROL) is one of the most studied enzymes of this fungi. There are three major commercial

formulations of this lipase (Table 1) and more than 200 scientific works have been published in the last 5 years

highlighting the relevance of this enzyme. Therefore, the aim of this entry is to provide a complete overview of ROL

in terms of biochemical properties,  enzyme native and heterologous production and its industrial applications.

Table 1. Major commercial suppliers of Rhizopus oryzae lipase and some lipase properties .

Supplier Name Application Lipase Properties

Amano Lipase DF “Amano” 15 Oil and fats Optimum pH range 6–7; stable pH

range 4–7, optimum temperature

[1][2][3][4]
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range 35–40 °C, relatively specific to

fatty acids

Sigma
Lipase from R. oryzae (no.

62305)
Oil and fats

Optimum pH 8, optimum

temperature 40 °C

Sigma

Lipase, immobilised on

Immobead 150 from R. oryzae

(no. 89445)

Pharmaceutical

and bioenergy

Optimum pH 7.5, optimum

temperature 40 °C

2. Biochemical Properties

R. oryzae lipase (ROL) is a protein synthesised as a precursor form containing a presequence of 26 amino acids,

followed by a prosequence of 97 attached to the N-terminal of a 269 amino acids mature sequence (Figure 1) .

All known lipases from Rhizopus genus follow the same identical structure even though some amino acidic

substitutions can be detected when their primary sequences are compared, not only between different species but

also between different isolated strains of the same species (Figure 2). For instance, Ben Salah et al.  addressed

the presence of several substitutions in the sequences of Rhizopus lipases published by his group and Sayari et al.

, Beer et al. , Derewenda et al.  and Khono et al. .

Figure 1. Schematic representation of R. oryzae lipase (ROL). Arrows stand for potential N-glycosylation points.

ROL contains four potential N-glycosylations sites (Figure 1) that follow the consensus sequence Asn-X-Ser/Thr,

where X is any amino acid instead of proline. One of these putative sites is found in the prosequence where

modifications in glycosylation patterns have been described to have an effect on protein secretion . For instance,

Yu et al.  added two extra N-glycosylation sites to ROL prosequence and expressed this mutant in Komagataella

phaffii (Pichia pastoris). The extracellular activity and total protein were 218- and 6.25-fold higher respectively in

the strain harbouring the two extra N-glycosylation sites than in the non-modified one highlighting the relevance of

glycosylation.

[6]

[7]

[8] [6] [9] [10]

[11]

[12]
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Figure 2. Multiple alignment of the sequences published by (1) Beer et al. (ROL) , (2) Ben Salah et al. (ROL) ,

(3) Sayari et al. (ROL) , (4) Khono et al. (Rhizopus niveus lipase)  and (5) Derewenda et al. (Rhizopus

delemar lipase) . Matching amino acids are highlighted in yellow, mismatching in white. BLAST from U.S.

National Library of Medicine and Snapgene have been used for the creation of this figure.

The presequence of ROL has been described to act as signal peptide promoting enzyme secretion, while the

prosequence has been reported to exhibit diverse functions that are still under research. Beer et al.  depicted

the significance of the latter in lowering lipase toxicity during its synthesis and in acting as intramolecular

chaperone enabling the proper folding of the enzyme. In fact, genetically modified E. coli strains producing

heterologous ROL without the prosequence resulted in cell lysis. To date, a large number of prosequences of

different enzymes have also been identified to function as intramolecular chaperone and to assist the folding of

their respective proteins . In addition, several scientific works have related ROL prosequence with the

translocation of the protein across the endoplasmic reticulum membrane, enhancement of free lipase stability and

changes in enzyme substrate specificity. Nevertheless, the mechanisms that allow these traits are yet unknown

despite the broad research carried out . In any case, both the presequence and the prosequence

are expected to be proteolytically removed to form the mature lipase. In spite of this, the native microorganism

secretes a lipase that is attached to the N-terminal of mature sequence the 28 C-terminal amino acids of the

prosequence (proROL), which then are cleaved via limited proteolysis catalysed by extracellular proteases .

However, some studies have indicated that the presence of these 28 amino acids of the prosequence alongside

the mature sequence is enough for some of the presumed features of the prosequence to occur. For instance,

higher free lipase stability and changes in enzyme specificity have been described when the 28 amino acids of the

prosequence were expressed together with the mature sequence in K. phaffii . In addition, these amino acids

[6] [7]

[8] [10]

[9]

[13]

[14]

[15][16][17][18][19][20]

[6][10][21]

[22]
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have also enabled lowering the toxicity of ROL production in E.coli  and they have been related to direct proteins

to secretory pathway in Aspergillus oryzae .

The mature sequence of R. oryzae lipase (rROL) is constituted by 269 amino acids and the protein formed by them

has a molecular weight (MW) of 29.542 kDa and a isoelectric point (pI) of 8—calculated by Expasy Proteomics

Server . These results agree with the published experimental data (Table 2) in which MW and pI values around

29 kDa and 8 have been respectively reported . However, variations in these values can be found

because of the presence of the 28 amino acids of the prosequence described above . In this case,

MW increases to 32 kDa and pI decreases roughly to 7, highlighting the average acid nature of these 28 amino

acids. Besides, the production of a lipase including the whole prosequence and close to 40 kDa has also been

described (entire-proROL) .

Table 2. Biochemical properties and substrate specificity of different published works dealing with ROL.

Lipase

Name 

MW

(kDa)

Isoelectric

Point

pH

Optimum

T

Optimum

(°C)

Substrate Specificity Ref.

rROL 29  8/7.25 30/40 C12>C10>C8>C4 

proROL 32  7.25 40 C8>C12>C10>C4 

rROL 30  8.5   

entire-

proROL
40  8   

pre-

entire-

proROL
42  8   

rROL 29  8 37  

[13]

[23]

[7]

[8][10][24][25]

[22][10][20][26][27]

[6][15]

1

2 2 4 [22]

4 [22]
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[6]

3
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rROL 29     

proROL 32     

proROL 34  6–6.5 35  

rROL 30  6 40  

proROL 35  9 40

C16>C18>C12>C8>C4 

C16>C12>C8>C18>C4 

proROL 32 6.9    

rROL 30 9.3 8.25 30 C8>C10>C6>C4>C12>C16,C14>C2 

proROL 35  5.2 30
C12>C10>C8>C6>C16>C5>C4>C3>C2

proROL 32 7.6 7.5 35 C8>C6>C4>C2 

rROL 29    

C12>C10>C8>C6>C4>C3>C2 

C8>C10>C18>C4>C6 

proROL 34    

C2>C3>C8>C6>C12>C10>C4 

C8>C10>C4>C6>C18 

proROL   8 40  

[8]

[8]

[10]

[10]

5

6

[18]

[20]

6 [24]

4
[25]

6 [26]

4

6

[28]

4

6

[28]

[29]
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rROL 30.3 8.6 8–8.5 30  

proROL   8.5 30  

proROL 37  8.5 40  

rROL 29  8   

ROL 17 4.2 7 40  

ROL   7 40  

ROL   6 45

C8>C4>C6>C2 

C8>C12>C14>C16>C18 

proROL 32  7 35  

ROL   6 30 C7,C8,C12,C16>C2,C3,C4,C18 

ROL   7.5 50  

proROL 32  7.5 30–40  

ROL 14.45 6.5 9 30–40 C16>C18>C12>C8>C4>C2 

   8.3 35–37  

proROL 35    C10>C14>C12>C8>C6>C4>C16 

[30]

[31]

[32]

[33]

[34]

[35]

6

5

[36]

[37]

5 [38]

[39]

[40]

4 [41]

[42]
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entire-

proROL
46     

The 3D structure of the lipase from R. oryzae  (Figure 3) and several microorganisms more, such as

Geotrichum candidum , Candida rugosa , Pseudomonas glumae  and Penicillium camemberti  have

been crystallographically resolved and showed that all lipases have a common α/β hydrolase fold structure that can

also be found in other hydrolases. Regarding ROL, it contains nine α-helixes and eight β-strands forming a

molecule that it is stabilised by three disulfide bonds between residues 29–269, 40–43 and 235–244 . In

addition, this structure contains three key components that can be also found in most lipases besides ROL, the lid,

the active site and the oxyanion hole . The lid is an amphiphilic loop—also called flap—that covers the active

site preventing the access of the substrate while the enzyme is in aqueous medium . The active site, in turn, is

mainly responsible for carrying out enzyme catalysis and consists, in all α/β hydrolases, of a highly conserved

catalytic triad formed by a nucleophilic, a catalytic acidic and a histidine residues. In lipases, this triad is composed

of nucleophilic serine residue and an aspartic or glutamic acid residue that it is bonded to a histidine; hence,

lipases are classified as serine hydrolases. In the specific case of ROL, the lid domain is a short α-helix structure

formed by six amino acids (FRSAIT) and the active site is formed by three amino acids Ser , Asp  and His  

. The function of these two elements is crucial during catalysis in which the lipase binds to the water/lipid

interface and the lid opening occurs by a concomitant structural change in the substrate-binding site that enables

the coupling of the substrate to the active site—lid-closed and partially opened 3D structures of Rhizopus delemar

(=oryzae) lipase have been described by Derewenda et al. . The structural change undergone is known as

‘interfacial activation’ and it is a unique property of lipases that enables them to hydrolyse insoluble esters and to

distinguish them from esterases that can hydrolyse water-soluble esters . It must be highlighted that the

28 amino acids of the prosequence introduced above have been deemed to interfere in this process as they are

located next to the lid region and contain 50% hydrophobic residues. Therefore, this sequence extends the

hydrophobic patch created in the open lipase by the open lid and the catalytic crevice influencing the interaction

with the lipidic substrate . This role might explain some of the assumed properties of these 28 amino acids,

however, the mechanism remains unknown. Additionally, together with the catalytic triad and the lid, the oxyanion

hole plays an important role and it is also a highly conserved sequence that largely influences the catalytic

efficiency of the enzyme. During the hydrolysis reaction, a negatively charged tetrahedral intermediate is generated

and it gets stabilised by hydrogen binding with the oxyanion hole . This function has been described to be

presumably performed by the hydroxyl and main-chain amide groups of Thr  in ROL .

[15]

Names are based on the established nomenclature in this review. ROL indicates that the lipase cannot be classified under the determined parameters inthis work;  different values caused by the employment of 200 or 400 mM tris-HCl buffer;  pre-entire-proROL includes the presequence as well as entire-proROL;  p-nitrophenol esters were employed for substrate specificity analysis;  methyl esters of different carbon chain length were employed forsubstrate specificity analysis. Saturated methyl esters are just considered;  homotriacylglycerols were employed for substrate specificity analysis.
1 2 34 56
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[47][54][55]
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Figure 3. Three-dimensional structure of R. delemar (= oryzae) lipase from two different points of view. PDB ID:

1TIC. Image obtained from iCn3D web-based 3D structure viewer.

Due to the relevance of the lipolytic activity of this enzyme, it has been widely researched in order to know how it is

affected by the conditions of reaction medium. Guillen et al.  described that ionic strength has a remarkable

impact. Actually, the relative activity of ROL in 200 mM Tris-HCl was reported to be twice the activity observed in

400 mM. Moreover, as all enzymes, ROL activity is highly influenced by the pH and temperature. Optimum activity

pH values of 8 have been principally reported . However, other studies have also

stated more acid  and basic  optimums. Regarding temperature, most of the

published optimum values can be found between 30 and 45 °C. In fact, 40 °C has been the most commonly

reported optimum  although lower  and higher  values

have also been described. Nevertheless, for both pH and temperature, as can be observed in Table 2, some of the

differences are based on the presence of the 28 amino acids of the prosequence. In this line, Kohno et al.

 reported these differences and afterwards, other works  described similar results highlighting the

relevance of these amino acids in lipase catalytic performance.

The presence of metal ions in reaction medium has been extensively studied as they play different and important

roles influencing the structure and activity of enzymes. These ions may bind to some of the amino acid side chains

of the lipase and participate in catalysis, interfere with the bonds between amino acid side chains and cause

denaturation of the active site or alter enzyme activity by stabilising or destabilising enzyme conformation 

. Amongst the different published works some contradictory information can be found. Nevertheless, there are

some metal ions that have been clearly described to enhance or worsen ROL and other lipases performance.

Wang et al.  and other authors  found that Ca  increases ROL activity as it might create electrostatic

interactions that mask the repulsions either between the enzyme and its emulsified substrate or between the

enzyme and product-free fatty acids . On the other hand, Hg  has been reported to act like a ROL activity

inhibitor suggesting that thiol groups are required for the adequate function of the enzyme . Similar results have

been reported with other lipases from Pseudomonas aeruginosa AAU2 , Galactomyces geotrichum Y05 ,

Yarrowia lipolytica  and Candida rugosa . In addition, no significant effects have been observed with the

[28]

[6][7][24][26][28][57][29][30][31][32][33]

[25][58][35][36][37][38][39][59] [18][41][42]

[22][10][18][28][29][32][58][35][59][41] [7][10][25][26][28][30][31][37][38] [36][39]

[10] [22][60][28]

[37][61][62]

[63]

[18] [34][37][41] 2+

[30] 2+

[25]

[64] [65]

[66] [67]
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chelating agent EDTA, indicating that ROL activity is independent of any metal, hence, it is not a metalloprotein 

.

ROL activity has also been analysed in presence of amino-acid-modifying agents in order to elucidate the

relevance of the different amino acids in protein catalytic performance. N-Bromosuccinimide (NBS), which acts

over tryptophan residues, has been reported to strongly inhibit enzyme activity indicating that the protein might

have a tryptophan residue involved in its activity . In the case of phenylmethylsulfonyl fluoride (PMSF), a

serine protease inhibitor whose activity is related to serine residues modification, no clear results have been

reported. Kantak et al.  indicated that this agent has a relevant effect while Hiol et al.  stated exactly the

opposite. However, these differences might be caused by the different disposition of the lipase lid during the assay,

that is, if it was open or not, it could allow or not the interaction of PMSF with the serine residue of the active site

.

ROL activity—as most lipases from Rhizopus genus—has a strong 1,3-regiospecificity that makes its activity

interesting for several industrial processes such as fat and oil modification for structured lipids production 

. Nevertheless, Li et al.  reported, while studying ROL methanolysis performance, that this lipase was not

regiospecific although showed a preference to 1,3-positions. These results were lately confirmed with Rhizopus

arrhizus (=oryzae) lipase . However, Okumura et al. and Song et al.  stated that Rhizopus delemar

(=oryzae) and R. oryzae lipases, respectively, do not hydrolyse the ester bond in position 2. Afterwards, Canet et

al. and Cao et al.  proved that mature ROL exhibits a negligible activity on 2-monoolein highlighting that the

lipase has a strong 1,3-regioespecificity. The observed dissimilarities amongst different works might be due to the

different employed reaction conditions that could enhance spontaneous acyl-migration, or the presence of the 28

amino acids of the prosequence that has already been described to have an effect on lipase specificity .

Besides 1,3-regiospecificity, substrate specificity of ROL has been also widely studied. Many of the published

works are based on the employment of p-nitrophenol esters of different carbon-chain length. For instance, ROL

isolated and characterised by Adak et al.  was reported to be more specific to long carbon-chain p-nitrophenol

esters, concretely to p-nitrophenol palmitate (C16). Guillen et al.  reported a similar trend for rROL produced in

K. phaffii and, although a higher specificity to short carbon-chain p-nitrophenol esters was detected for proROL, the

presence of esterases in the commercial product was concluded to be the reason. In fact, Tako et al.  also

observed that the longer the carbon-chain, the higher the specificity of ROL. However, in this last case, the

maximum was obtained with p-nitrophenol dodecanoate (C12) and not palmitate. ROL substrate specificity has

been also analysed with homotriacylglycerols, that is, triacylglycerols in which the three fatty acids are identical. C8

and C10 homotriacylglycerols—triacylglycerols containing three C8 and C10 fatty acids respectively—are

preferably hydrolysed by ROL while it barely acts over C2 and C4 homotriacylglycerols. In contrast to some of the

published works, some authors have also described that no significant differences were observed with those

substrates between rROL and proROL .

Lipases are widely known for their capacity to carry out synthesis reactions in non-aqueous mediums. In fact, as

previously mentioned, this capacity makes them relevant for many industrial processes in which these reactions

are needed, or the solubility of substrates/products requires the use of organic solvents. Therefore, the higher the

[25]

[41]

[25][34]

[34] [26]

[68]

[5][4][26]

[36] [69]

[70] [38][71]

[72][73]

[22][13]

[41]

[28]

[25]

[15][24][26][28]
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lipase stability in these solvents, the more suitable the lipase for industrial applications . ROL has been

extensively described as a tolerant enzyme to non-aqueous solvents , particularly in alkanes and long-

chain alcohols such as hexane and dodecanol respectively. However, polar solvents like acetone or short-chain

alcohols have an important negative effect on the enzyme because they strip off the crucial bound water from the

enzyme’s surface . In some cases, it is remarkable the different results that can be obtained between the

stability of the enzyme in a solvent, such as methanol and ethanol, and the operational stability employing that

solvents as substrate. For instance, methanol has proven to be more detrimental than ethanol during biodiesel

synthesis while during stability assays exactly the opposite result was obtained .

3. Rhizopus oryzae Lipase Production and Bioprocess
Engineering

First attempts of ROL production were made with the original fungi isolated from palm fruit . R. oryzae

secretes, as previously mentioned, one form of lipase with a molecular weight close to 32 kDa—the mature

sequence including 28 amino acids of its prosequence. However, a second form of ROL with a molecular weight

around 29 kDa was detected after keeping the supernatant at 6 °C for few days; i.e., the lipase form corresponding

to the loss of the 28 amino acids . Consequently, the distinct lipases derived from R. oryzae described in the

literature are originated because of the different proteolytic processing and not because of the presence of different

genes .

To increase ROL industrial production, its expression in a cell factory is mandatory. This way, production cost,

bioprocess engineering and downstream complexity are minimised .

In Escherichia coli, the presence of disulphide bonds in ROL structure and the lack of the necessary enzymes to

process fungal maturation signals were the main causes that led to the production of enzymatically inactive protein

as insoluble aggregates . Thereafter, active lipase was obtained at lab scale by subjecting these aggregates to a

refolding process. However, the large-scale production was not implemented due to the high cost of the procedure

. Despite that, Di Lorenzo et al. , achieved the production of an active and soluble ROL and proROL using the

E. coli Origami (DE3) strain and pET-11d expression system. The final specific activities of both enzymes were

quite similar but the yield of proROL production was higher than ROL, likely because of the toxic effect of the latter

towards the host cells.

To avoid the inherent problems of prokaryotic cell factories producing eukaryotic proteins, particularly those related

to post-translational processing, eukaryotic cell factories were tested for ROL production.

The extracellular production of ROL has been studied in S. cerevisiae and K. phaffii (P. pastoris) by expressing

essentially three different genes. A gene encoding the prosequence of 97 amino acids fused to the N-terminal of

the mature lipase region of 269 amino acids (proROL-gene), a gene encoding a truncated prosequence of its 28 C-

terminal amino acids fused to the N-terminal of the mature lipase region (28proROL-gene) and a gene encoding

the mature lipase (rROL-gene). Regardless of proROL-gene or 28proROL-gene expression, a protein with only 28

[74]

[18][26][31]

[75]

[22]

[26][31]

[8]

[6]

[5]

[6]

[13] [76]
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amino acids of the prosequence plus the mature lipase (proROL) was detected. Exceptionally, the complete

prosequence plus the mature lipase region (entire-proROL) was also reported with proROL-gene construction.

With respect to the rROL-gene construction, jus the mature lipase (rROL) was obtained.

First attempts of producing ROL in eukaryotic platforms were made with the widely used cell factory S. cerevisiae.

Takahasi et al.  reported that S. cerevisiae secreted two active lipases when it was transformed with the

proROL-gene fused to the pre-α-factor, the entire-proROL and proROL—the lipase formed after Kex2-like protease

cleavage of the prosequence. In parallel, when S. cerevisiae strains were transformed with rROL-gene fused to the

pre-α or prepro-α factor encoding gene, almost no activity was detected, highlighting the mentioned relevance of

ROL prosequence during lipase production .

A summary of the results obtained with these cell factories is shown in Table 3.

Table 3. Summary of E. coli and S. cerevisiae cell factories expressing Rhizopus oryzae lipase.

3.1. Komogataella phaffii Cell Factory

Unlike the reported results with S. cerevisiae, when proROL-gene was expressed in K. phaffii cell factory, only

proROL was detected in the medium, which might indicate that the activity of the Kex2-like protease is higher in

this cell factory than in S. cerevisiae . Moreover, rROL-gene was satisfactorily expressed and the corresponding

lipase was detected in the supernatant .

This appropriate performance on ROL secretion, jointly with the well-known excellent characteristics of K. phaffii,

make this yeast the most suitable cell factory for heterologous ROL production . In addition, K. phaffi

does not produce endogenous extracellular lipases or esterases . Thus, downstream processes might be easier

and cheaper. However, two of the bottlenecks of K. phaffii cell factory are transformed clones screening and

selecting the best operational strategy to maximise production. To minimise this problem, the use of

[15]

[16][19][21]

Cell Factory Promotor/Vector Lipase Production Lipolytic Activity Reference

E. coli Origami

DE3

pET11 proROL Intracellular 166 U mL

pET22 proROL Intracellular 82 U mL

S. cerevisiae

UPR-ICL rROL Extracellular 0.29 U flask

UPR-ICL proROL Extracellular 191 U flask

−1

[76]

−1

−1

[15]

−1

[17]

[24]

[77][78][79][80]

[81]
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microbioreactor devices has been successfully implemented . Further information about K. phaffii as cell factory

for ROL production was summarised by López-Fernández et al. 

3.2. Whole cells

Hama et al. reported that rROL and proROL are located in different regions in R. oryzae cells, proROL in the cell

wall and rROL bound to the cell membrane. Besides, these cells have been successfully employed as whole cells

biocatalysts (WCB) in many relevant biotransformations, for instance, for enzymatic biodiesel production . It

must be highlighted that the fatty acid composition of the membrane has been reported to influence lipase activity

and stability during biodiesel reactions .

Modified S. cerevisiae strains producing ROL have also been used as WCB . Matsumoto et al.  reported

the intracellular production of proROL in S. cerevisiae under the 5′ upstream region of the isocitrate lyase gene of

Candida tropicalis (UPR-ICL). Additionally, the expression of the lipase under the constitutive promoter

glyceraldehyde-3-phosphate dehydrogenase was also studied. However, this system did not improve the results

obtained with UPR-ICL.

proROL was successfully expressed under P control and displayed on Mut  phenotype K. phaffii cell surface

using the Flo1P anchor system previously developed in S. cerevisiae. The obtained WCB showed higher thermal

stability than free enzyme . Additionally, a similar approach using Sed1p anchor protein was studied in a Mut

phenotype. In the same sense, the obtained biocatalysts was stable in a wide range of temperatures and pH .

4. Industrial Applications of Rhizopus oryzae Lipase

Its 1,3-regiospecificity and catalytic versatility make ROL appropriate for improving the sustainability of food,

pharmaceutical and energy industry .

4.1. Biodiesel Production

Because of petroleum depletion and environmental concerns, in the past decade, biodiesel (mono-alkyl esters of

long chain fatty acids) is gathering significant interest as a renewable, biodegradable and more environmentally

friendly alternative to fossil fuels. Biodiesel can be classified into three different generations based on the source

from which it is derived. First-generation biodiesel is synthesised with edible-oils such as soybean or sunflower oils.

Therefore, it might cause the so-called “food vs. fuel” ethical issue because of the use of food and agricultural

lands for biofuel production . In order to prevent this problem, alternative substrates have emerged for biodiesel

synthesis, leading to second- and third-generation biodiesel production. The former uses non-edible oils that are

not considered for human consumption and are produced from crops that, even if they require lands, are generally

poor lands not useful for agriculture. Meanwhile, third-generation biodiesel completely avoids ethical issues by

using microbial lipids and oleaginous wastes such as oils from microalgae or oleaginous yeasts and waste cooking

oils (WCO) respectively . Additionally, there is a fourth-generation biodiesel that is at its preliminary

[82]

[83]

[84][85]

[86]

[87][88] [87]

AOX 
+

[89] S

[90]

[5][91][92]

[93]

[94][95][96][97]
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research stages and is based on man-made biological tools, that is, biodiesel producing genetically modified

microorganisms .

Typically, these alternative substrates, those yielding second- and third-generation biodiesel, have a higher free

fatty acid (FFA) content, which can make biodiesel production through chemical synthesis—the most common

process for current industrial biodiesel production—more complex because a previous operation of FFA

neutralisation is required to avoid soap formation, an usual side reaction when substrates with high FFA content

and basic catalysts are employed . In this context, enzymatic biodiesel synthesis with lipases arouses as

an alternative owing to its several advantages such as the milder reaction conditions, less water consumption,

easier downstream and particularly, the absence of side reactions and consequently the capacity of employing

substrates with high FFA content . In fact, substrates with initial high amounts of FFA have been reported to

enhance enzymatic biodiesel synthesis reaction rate and biocatalysts operational stability . Given all the

advantages, numerous lipases have been studied in this biotransformation with significant results, such as the

lipases of Candida rugosa , Candida antartica  and Burkholderia cepacia .

In the seeking for the best lipase to make enzymatic biodiesel feasible at industrial scale, lipases’ regiospecificity

has become a crucial trait. Non-specific enzymes produce mono-alkyl esters and glycerol, which is an undesired

by-product of the transesterification reaction that has been described to hinder reaction progress or even affect

negatively on enzymes stability and biodiesel downstream . Conversely, 1,3-regioespecific lipases, avoid

glycerol formation by producing 2-monoacylglycerol which acts as lubricant and in certain amount, upgrades

biodiesel characteristics . Furthermore, monoacylglycerols can improve the cost-effectiveness of a

biodiesel biorefinery as they are more valuable products than glycerol because of their utility in pharmaceutical and

food industry as emulsifiers . Consequently, ROL has been widely studied in biodiesel production

because of its regiospecificity.

Considering biodiesel ethical issues, even if several studies have employed ROL with edible oils such as olive ,

rapeseed , soybean  and sunflower  oils—commonly as model substrates for

research—most of the published works have focused on the use of alternative substrates (Table 4). Jatropha

curcas oil is one of the non-edible oils with higher potential for second-generation biodiesel production, probably

because of the easy cultivation process and worldwide spread of the plant . Rodrigues et al.  reported

yields close to the theoretical 100%—real 66% considering ROL 1,3-regioespecificity—and high operational

stability of the biocatalysts. In Table 4 are detailed other studies with promising results using this substrate as well

as other non-edible oils like Pistacia chinensis bge oil , Tung oil , Calophyllum inophyllum oil  and

alperujo oil (olive pomace) .

Table 4. Summary of biodiesel production with Rhizopus oryzae lipase as main biocatalyst.

[98][99]

[95][100][101]

[102][103]

[102][104][105]

[106][107] [108][109] [110][111]

[112]

[113][114][115]

[116][117][118]

[119]

[120][121] [122][123][124][125] [126][127]

[128] [129]

[130] [32] [131]

[115]

Substrates Lipase Immobilisation

Technique

Reactor

Type

Stepwise

Addition

Biodiesel

Generation

Yield-

Conversion/Op.

Stability

Ref.



Rhizopus oryzae Lipase | Encyclopedia.pub

https://encyclopedia.pub/entry/3491 14/68

OO + MeOH rROL
IA onto ReliZyme

OD 403M
PBR Yes 1

Y: PBR 49.1%

OS: second

batch 44.8%

OO + MeOH rROL
IA onto ReliZyme

OD 403M
STR Yes 1

Y: STR 33.56%

OS: second

batch 7.7%

RO + MeOH proROL WCB over agar plate SLLB No 1
No biodiesel

production

RO + EtOH proROL WCB over agar plate SLLB No 1
No biodiesel

production

RO + MeOH proROL WCB over agar plate SGLB No 1 Y: 58%

RO + EtOH proROL WCB over agar plate SGLB No 1 Y: 72%

Crude CO +

MeOH
proROL Free enzymes BR Yes 1 Y: 68.56%

Crude CO +

MeOH

proROL-

CRL
Free enzymes BR Yes 1 Y: 84.25%

Crude CO +

MeOH

proROL-

CRL

CI onto functionalised

silica gel
BR Yes 1 Y: 88.9%

SYO + MeOH proROL
WCB immobilised

into BSPs
BR Yes 1

Y: 82.2% OS:

after 6 cycles

almost all

activity loss

TM
st [119]

TM
st [119]

st [120]

st [120]

st [120]

st [120]

st [121]

st [121]

st [121]

st [122]
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SYO + MeOH proROL
CI WCB immobilised

onto BSPs
BR Yes 1

Y: 92.2% OS:

after 6 cycles no

loss of activity

SYO + EtOH proROL

IA onto microporous

resin NKA

(polystyrene)

BR Yes 1 Y: 58.5%

SYO + EtOH
proROL-

CRL

IA onto microporous

resin NKA

(polystyrene)

BR Yes 1 Y: 80.8%

SYO + EtOH

proROL-

Novozyme

435

proROL: IA onto

microporous resin

NKA (polystyrene).

Novozyme 435: IA

onto Lewatit VP OC

1600

BR Yes 1

Y: 98.5% OS:

after 20 cycles Y

decreased to

78.3%

SYO + EtOH
proROL-

PFL

IA onto microporous

resin NKA

(polystyrene)

BR Yes 1 Y: 55.8%

SYO + MeOH proROL

CI onto magnetic

chitosan

microspheres

MSFBR Yes 1

Y: 91.3% OS:

after 6 reaction

cycles Y

decreased to

around 80%

SYO + MeoH proROL
WCB immobilised

into BSPs
BR Yes 1

Y: over 90% OS:

after 10 reaction

cycles Y

decreased to

10%

st [122]

st [123]

st [123]

st [123]

st [123]

st [124]

st [125]
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SYO + MeoH proROL
WCB immobilised

into BSPs
PBR Yes 1

Y: over 90% OS:

after 10 reaction

cycles Y

decreased to

80%

SO + EtOH proROL

CI onto modified

sepiolite with p-

hydroxybenzaldehyde

linker

BR No 1

C: 84.3% OS:

after 9 cycles C

decreased to

21.4%

]

SO + EtOH proROL

CI onto modified

sepiolite with

benzylamine-

terephthalic aldehyde

linker

BR No 1  

SO + EtOH proROL
IE onto demineralised

sepiolite
BR No 1

Y: 90.2% OS:

proROL IE after

9 cycles C

decreased to

18.1%

Pistacia

chinensis bge

seed oil +

MeOH

rROL
CI onto Amberlite

IRA-93
BR Yes 2

Y: 92% OS:

after 8 cycles Y

decreased to

60%

Pistacia

chinensis bge

seed oil +

MeOH

rROL
IA microporous resin

HPD-400
BR Yes 2

Y: 94% OS:

after 8 cycles Y

decreased to

50%

Calophyllum

inophyllum linn

proROL WCB immobilised

into BSPs

PBR Yes 2 Y: 92% OS:

after 6 cycles Y

st [125]

st [126]

st [126]

st [126]

nd [130]

nd [130]

nd [131]
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oil + MeOH decreased a

4.9%

Oil extracted

from

Nannochloropsis

gaditana +

MeOH

proROL WCB BR Yes 3

Y: 83% OS:

after 3 cycles Y

decreased to

71%

Oil extracted

from

Nannochloropsis

gaditana +

MeOH

proROL
WCB immobilised

into BSPs
BR Yes 3

Y: 70% OS:

second cycle Y

decreased to

43%

Oil extracted

from

Nannochloropsis

gaditana +

MeOH

proROL
WCB immobilised

into BSPs
BR Yes 3

Y: 83% OS:

after 3 cycles Y

decreased to

71%

Oil extracted

from

Nannochloropsis

gaditana +

MeOH

proROL WCB TPB No 3 Y: 58%

Oil extracted

from

Nannochloropsis

gaditana + EtOH

proROL WCB TPB No 3 Y: 92%

Oil extracted

from

proROL WCB TPB No 3 Y: 58%

rd [132]

rd [132]

rd [133]

rd [134]

rd [134]

rd [134]
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Botryococcus

braunii + MeOH

Oil extracted

from

Botryococcus

braunii + EtOH

proROL WCB TPB No 3 Y: 68%

Oil extracted

from Chlorella

vulgaris +

MeOH

proROL Free enzyme BR Yes 3 C: 75%

Oil extracted

from Chlorella

vulgaris +

MeOH

proROL IA onto MNP BR Yes 3

C: 46% OS:

after 5 cycles

decreased to

10%

Oil extracted

from Chlorella

vulgaris +

MeOH

proROL
CI onto AP modified

MNP
BR Yes 3

C: 53% OS:

after 5 cycles C

decreased to

25%

Oil extracted

from Chlorella

vulgaris +

MeOH

proROL
CI onto AP-GA

modified MNP
BR Yes 3

C: 69.8% OS:

after 5 cycles C

decreased to

45%

Sludge palm oil

+ MeOH
proROL

IE into alginate-

polyvinyl alcohol

beads

BR No 3

Y: 91.30% OS:

no activity loss

after 15 cycles

Oil extracted

from SCG +

MeOH

R.

delemar

Free enzyme BR No 3 Y: 18%

rd [134]

rd [135]

rd [135]

rd [135]

rd [135]

rd [136]

rd [137]
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(= oryzae)

lipase

WCO + MeOH proROL Free enzyme BR  3 Y: 93%

WCO + iso-

propanol
proROL Free enzyme BR  3 Y: 86.8%

WCO + iso-

butanol
proROL Free enzyme BR  3 Y: 80.2%

WCO + iso-amyl

alcohol
proROL Free enzyme BR  3 Y: 64%

WCO + MeOH proROL
WCB IE into calcium

alginate beads
BR  3 Y: 84%

WCO + iso-

propanol
proROL

WCB IE into calcium

alginate beads
BR  3 Y: 71%

WCO + iso-

butanol
proROL

WCB IE into calcium

alginate beads
BR  3 Y: 62%

WCO+ iso-amyl

alcohol
proROL

WCB IE into calcium

alginate beads
BR  3 Y: 43%

JO + MeOH proROL
WCB IE into sodium

alginate beads
BR No 2

Y: 80.5% OS:

after 6 cycles Y

decreased to

61.5%

KO + MeOH proROL WCB IE into sodium

alginate beads

BR No 2 Y: 78.3% OS:

after 6 cycles Y

rd [138]

rd [138]

rd [138]

rd [138]

rd [138]

rd [138]

rd [138]

rd [138]

nd [139]

nd [139]
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decreased to

63.4%

SYO + MeOH proROL WCB BR Yes 1

Y: 80% OS:

after 3 cycles Y

decreased to

18%

SYO + MeOH proROL
WCB immobilised

into BSPs
BR Yes 1

Y: 82% OS:

after 10 cycles Y

decreased to

10%

SYO + MeOH proROL
CI WCB immobilised

into BSPs
BR Yes 1

Y: 74% OS:

after 35 cycles Y

decreased to

65%

SYO + MeOH proROL
WCB immobilised

into BSPs
BR Yes 1

Y: 82% OS:

after 6 cycles Y

decreased to

48%

SYO + MeOH proROL
CI WCB immobilised

into BSPs
BR Yes 1

Y: 80% OS:

after 6 cycles Y

decreased to

70%

ALO + MeOH rROL IA onto rice husk BR Yes 2  

ALO + MeOH rROL
IA onto ReliZyme

OD403
BR Yes 2

Y: 64.5% OS:

after 7 cycles Y

decreased to

41.3%

st [140]

st [140]

st [140]

st [141]

st [141]

nd [142]

TM
nd [142]
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Crude microbial

oil from Candida

sp. LEB-M3 +

MeOH

rROL
IA onto ReliZyme

OD403
BR Yes 3

Y: 38% OS:

after 7 cycles Y

decreased to

26.6%

Neutralised

microbial oil

from Candida

sp. LEB-M3 +

MeOH

rROL
IA onto ReliZyme

OD403
BR Yes 3 Y: 38%

OO + MeOH rROL
IA onto ReliZyme

OD403
BR Yes 1

Y: 54.3% OS:

after 7 cycles Y

decreased to

40%

OA + MeOH rROL
IA onto ReliZyme

OD403
BR Yes 1 Y: 68%

RO + EtOH proROL
IA onto microporous

resin NKA
BR No 1

Y: above 98%

OS: After 10

cycles Y

decreased to

60%

JO + MeOH
proROL-

CRL

WCB (proROL) and

free enzyme (CRL) IE

into sodium alginate

beads

PBR No 2 Y: 84.2%

KO + MeOH
proROL-

CRL

WCB (proROL) and

free enzyme (CRL) IE

into sodium alginate

beads

PBR No 2 Y: 81%

TM
rd [143]

TM
rd [143]

TM
st [143]

TM
st [143]

st [144]

nd [145]

nd [145]
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WCO + MeOH proROL
WCB IE into sodium

alginate beads
BR No 3 Y: 94.01%

WCO + Methyl

acetate
proROL

WCB IE into sodium

alginate beads
BR No 3 Y: 91.11%

WCO + Ethyl

acetate
proROL

WCB IE into sodium

alginate beads
BR No 3 Y: 90.06

WCO + MeOH proROL
IE into sodium

alginate beads
BR No 3 Y: 83%

WCO + Methyl

acetate
proROL

IE into sodium

alginate beads
BR No 3 Y: 80%

WCO + Ethyl

acetate
proROL

IE into sodium

alginate beads
BR No 3 Y: 78%

Oil extracted

from Chlorella

vulgaris +

MeOH

proROL IA into MNP BR Yes 3

Y: 45% OS:

after 5 cycles Y

decreased to

10%

Oil extracted

from Chlorella

vulgaris +

MeOH

proROL IA into MGO BR Yes 3

Y: 51% OS:

after 5 cycles Y

decreased to

16%

Oil extracted

from Chlorella

vulgaris +

MeOH

proROL IA into MGO-AP BR Yes 3

Y: 54% OS:

after 5 cycles Y

decreased to

25%

rd [146]

rd [146]

rd [146]

rd [146]

rd [146]

rd [146]

rd [147]

rd [147]

rd [147]
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Oil extracted

from Chlorella

vulgaris +

MeOH

proROL CI into MGO-AP-GA BR Yes 3

Y: 68% OS:

after 5 cycles Y

decreased to

58.77%

Cottonseed oil +

MeOH
proROL

WCB immobilised

into BSPs
BR Yes 1 Y: 27.9%

Rubber seed oil

+ MeOHe
proROL Free enzyme BR Yes 2 Y: 31%

Rubber seed oil

+ Ethyl acetate
proROL Free enzyme BR No 2 Y: 33.3%

SYO + MeOH
proROL-

CRL

CI onto silica gel

pretreated with AP

and GA

BR Yes 1

Y: 99.99% OS:

after 20 cycles Y

decreased to

85%

RO deodoriser

distillate +

MeOH

proROL Free enzyme BR Yes 1 Y: 93.07%

RO deodoriser

distillate +

MeOH

proROL-

CRL
Free enzyme BR Yes 1 Y: 98.16%

ALO + MeOH rROL

CI onto ET, AP and

GA pretreated

ReliZyme  HFA403

BR Yes 2

Y: 57.16% OS:

after 5 cycles Y

decreased a

12.31%

ALO + EtOH rROL CI onto ET, AP and

GA pretreated

BR Yes 2 Y: 60.25% OS:

after 7 cycles Y

rd [147]

st [148]

nd [149]

nd [149]

st [150]

st [151]

st [151]

TM

nd [115]

nd [115]
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ReliZyme  HFA403 decreased a

11.89%

Triolein + MeOH rROL Free enzyme BR No 1 Y: 71.2%

Triolein + EtOH rROL Free enzyme BR No 1 Y: 64.2%

Triolein + MeOH rROL
IA onto RelyZyme

OD403S
BR No 1 Y: 82.6%

Triolein + EtOH rROL
IA onto RelyZyme

OD403S
BR No 1 Y:100.7%

JO + MeOH rROL
IA onto Lewatit VP

OC 1600
BR Yes 2

Y: 61% OS:

after 10 cycles Y

decreased a

40%

JO + MeOH rROL
IA onto Lifetech

ECR1030M
BR Yes 2

Y: 63% OS:

after 10 cycles Y

decreased a

40%

JO + MeOH rROL
IA onto Lifetech

AP1090M
BR Yes 2

Y: 55% OS:

after 10 cycles Y

decreased a

25%

JO + MeOH rROL
CI onto Lifetech

ECR8285M
BR Yes 2

Y: 63% OS:

after 10 cycles Y

decreased a

60%

TM

st [72]

st [72]

TM
st [72]

TM
st [72]

nd [152]

TM
nd [152]

TM
nd [152]

TM
nd [152]
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JO + MeOH rROL
CI onto Amberlita IRA

96
BR Yes 2

Y: 68% OS:

after 10 cycles Y

decreased a

20%

OO + MeOH prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 77%

OO + EtOH prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 62%

OO + Propanol prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 46%

OO + Butanol prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 18%

SYO + MeOH prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 50%

SYO + EtOH prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 46%

SYO + Propanol prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 35%

SYO + Butanol prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 10%

CO + MeOH prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 70%

nd [152]

st [153]

st [153]

st [153]

st [153]

st [153]

st [153]

st [153]

st [153]

st [153]
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CO + EtOH prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 56%

CO + Propanol prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 43%

CO + Butanol prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 16%

SO + MeOH prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 32%

SO + EtOH prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 28%

SO + Propanol prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 17%

SO + Butanol prorROL
IA onto Amberlite

XAD 761
BR No 1 Y: 7%

Algal oil +

MeOH
prorROL

IA onto Amberlite

XAD 761
BR No 3 Y: 63%

Algal oil + EtOH prorROL
IA onto Amberlite

XAD 761
BR No 3 Y: 55%

Algal oil +

Propanol
prorROL

IA onto Amberlite

XAD 761
BR No 3 Y: 40%

Algal oil +

Butanol
prorROL

IA onto Amberlite

XAD 761
BR No 3 Y: 13%

st [153]

st [153]

st [153]

st [153]

st [153]

st [153]

st [153]

rd [153]

rd [153]

rd [153]

rd [153]
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ALO + MeOH rROL

CI onto AP and GA

treated ReliZyme

HFA403

BR Yes 2

Y: 28.62% OS:

after 9 cycles, Y

decreased a

43%

JO + MeOH proROL
WCB immobilised

into BSPs
BR Yes 2

Y: 88.6% OS:

after 6 cycles Y

decreased a

21%

OA + MeOH proROL
WCB immobilised

into BSPs
BR No 1

Y: 80% OS:

after 8 cycles,

almost no

activity loss.

Rice bran oil +

MeOH
proROL

IA onto rod-like

mesoporous silica
BR No 1

Y: 81.7% OS:

after 3 cycles Y

decreased to

67.7%

JO + MeOH proROL

IE into polyvinyl

alcohol—alginate

matrix

BR No 2 Yield: 87.1%

ALO + MeOH rROL
IA Octadecyl-

Sepabeads
BR Yes 2

Y: 58.31% OS:

after 2 cycles Y

decreased to

54.67%

Tung oil +

MeOH
proROL

CI onto Amberlite IRA

93
BR Yes 2

Y: 91.9% OS:

after 6 cycles Y

decreased to

85.1%

TM nd [104]

nd [154]

st [155]

st [156]

nd [157]

nd [158]

nd [32]
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Regarding third-generation biodiesel, microalgae and waste oils have been the most studied substrates. The

former has several advantages that make the overall process of biodiesel production more environmentally friendly

as microalgae oil production involves atmospheric CO  fixation and can use domestic wastewater like growth

substrate facilitating its posterior treatment. However, the main drawbacks for microalgae oil employment are the

scale-up of photobioreactors and lipids extraction . Nevertheless, ROL has been satisfactorily employed

with this substrate, for instance, with oils extracted from Nannochloropsis gaditana , Botryococcus

braunii  and Chlorella vulgaris . Actually, with the last one, fatty acid methyl esters (FAME) conversions over

70% were obtained indicating ROL suitability for biodiesel production with microalgae oil. Additionally, oils extracted

from oleaginous yeasts, such as Candida sp. LEB-M3, have been also employed. The use of yeasts becomes

important in biodiesel refineries as they might grow in the glycerol coming from this biofuel production .

Regarding waste oils, they have a significant potential in biodiesel industry because of their relevance in circular

economy strategies, which aim to avoid residue generation by seeking new applications to waste .

Moreover, considering the tight economic competition between biodiesel and fossil fuels, cheap raw materials are

required. In fact, the cost of the feedstocks is more than the 70% of the total cost of biodiesel. Thus, oleaginous

wastes might help lowering these percentage and making enzymatic biodiesel production feasible . Sludge

from palm oil  and spent coffee grounds can be found amongst some of the oleaginous residues studied in

biodiesel production with ROL. However, waste cooking oil is the foremost substrate of this category because it is

inexpensive and, through its employment in biodiesel synthesis, public institutions avoid the great cost of its

management . Relevant results have been published with WCO, for instance, Bharathiraja et al.

 reported maximum triglyceride conversion of 94%. Nevertheless, not many studies dealing with ROL and

WCO have been published and, considering the great relevance of this substrate for biodiesel industry, it could be

a possible research target for future projects.

Biocatalysts operational stability, reusability and price are related and essential traits that must be considered in

enzymatic biodiesel production because of the high cost of enzymes and the tight economic competition with

conventional diesel. Some approaches have focused on cutting prices of the enzymes through heterologous

production, as it has been explained in the previous section. Besides, other strategies have centred on lipase

immobilisation. This technique allows enzyme reutilisation and generally enhances enzyme stability . In

the following paragraphs, the different immobilisation strategies assessed with ROL in biodiesel production will be

introduced.

Earlier attempts of employing this enzyme in biodiesel synthesis were principally based on whole-cell biocatalysts

(WCBs). Thus, the enzyme acts confined in its natural cellular environment, which protects the lipase from

inactivation and degradation. Moreover, as no downstream processes of the biocatalyst are needed, its final cost is

considerably lowered . Syed et al.  immobilised lipase-producing R. oryzae cells into alginate beads and

employed them in biodiesel production with jatropha and karanja oil. A response surface optimisation was applied

Babassu oil +

EtOH
proROL

WCB immobilised

into BSPs
BR No 1 Y: 74.15%st [159]
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and under the best conditions, biodiesel yields of 73.5% and 72.5% with each respective oil were obtained. In

addition, operational stability of the biocatalyst was evaluated and after six cycles, just an activity loss of 20% was

reported. Even if free cells, without immobilisation into alginate beads, could have been used in biodiesel

production, Sun et al.  stated the suitability of cell immobilisation to avoid enzyme leakage and denaturation.

This author immobilised R. oryzae fungus cells onto biomass support particles (BSPs) and obtained higher

operational stability than using free cells. Moreover, to further minimise the enzyme leakage and deactivation, the

crosslinking agent glutaraldehyde was used for immobilised cells treatment. The crosslinked biocatalyst obtained

better FAMEs yields and operational stability. In the same sense, glutaraldehyde treatment of WCBs—also called

WCBs stabilisation—was reported by Ban et al.  as well. Lately, He et al.  employed this strategy too and

obtained a ROL biocatalyst with increased operational stability. After six reactions cycles, more than 90% of initial

activity was maintained. However, WCBs show higher complexity in being reused and worse conversion rates than

free lipases immobilised onto acrylic resins . For instance, Bharathiraja et al.  published that WCBs exhibit

worse reaction rate than immobilised purified proROL because of diffusional problems. Therefore, considering

these inconveniences and how heterologous production of ROL has been improved, the use of free ROL and its

subsequent immobilisation have gained importance amongst the published works.

Traditionally, lipases have been immobilised through adsorption, particularly onto hydrophobic supports—generally

acrylic resins with hydrophobic superficial groups such as octadecyl or divinylbenzene—because of the presence

of a large hydrophobic patch around the catalytic triad of the lipases that enables an easy immobilisation and might

lead to their hyperactivation . However, during biodiesel enzymatic synthesis, highly non-polar reaction

mediums are employed that might cause enzyme desorption and in consequence, poor biocatalyst operational

stability . Nevertheless, some authors have used ROL with this immobilisation technique and obtained

outstanding stability results. For instance, Bonet-Ragel et al.  reported that after six consecutive reaction

cycles, the biocatalysts retained more than the 60% of the initial activity, in accordance with the results published

by Duarte et al.  and Su et al. . Moreover, in order to overcome the potential enzyme leakage when

adsorption techniques are used, some published works have treated the obtained biocatalysts with crosslinking

agents like glutaraldehyde, as it was previously explained for WCBs . Notwithstanding these mentioned

works and other listed in Table 4, ROL entrapment and covalent immobilisation are the most common

immobilisation techniques. The former has been used not only with free ROL but with WCBs because it is an easy,

fast and cheap immobilisation technique . The most common entrapment strategies are based on polyvinyl

alcohol and alginate employment . Muanruksa et al.  obtained outstanding results with free

proROL immobilised into alginate-polyvinyl alcohol beads. Esterification degrees over 90% were reported and the

biocatalyst exhibited a high operational stability, 15 reaction cycles were done with almost no loss of activity.

Regarding covalent immobilisation, since the binding forces between the lipase and the supports are strong,

obtained biocatalysts tend to show high stability, high resistance to extreme pH and temperature conditions and

almost no enzyme leakage. However, these strong links between the enzyme and the support, as well as the harsh

conditions employed during immobilisation process, might have a negative impact on the enzyme activity .

In any case, there are several studies that employ this immobilisation technique in biodiesel synthesis. Nematian et

al.  immobilised proROL onto a superparamagnetic nanostructure and described that amongst the three
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different biocatalysts studied—two based on lipase-support electrostatic interactions and the third one on covalent-

linkage—the covalently immobilised proROL showed higher conversion and operational stability. Bonet-Ragel et al.

 covalently immobilised rROL onto glutaraldehyde pre-treated epoxide acrylic resins and studied its reaction

performance and operational stability in biodiesel synthesis with methanol and ethanol as acyl-acceptors. Under

the best conditions, yields close to the theoretical 100% were obtained after 360 min for methanol and 260 min for

ethanol. In addition, regarding operational stability, no significant activity loss was observed after five consecutive

reaction cycles with both alcohols. Besides, Luna et al. described similar operational stability results with

ethanol and sunflower oil as substrates, indicating that covalent immobilisation is an adequate technique for

biodiesel synthesis with ROL.

In terms of operational strategy in biodiesel synthesis, although ROL has been described as a suitable industrial

and solvent-tolerant enzyme, some improvements have been reported to obtain better reaction yields, higher

stability or enhance the scale-up of the bioprocess. One of the most commonly employed approach is based on the

stepwise addition of the alcohol as the interaction between the lipase and the alcohol is the main enzyme-

deactivating factor . Several authors have published works in which ROL and stepwise addition strategy

have been employed . Additionally, other authors have focused on seeking the most adequate acyl-

acceptor—the one that has fewer negative effect on the enzyme—by testing different alcohols  and even

the short-esters of the corresponding alcohols performing interesterification reactions . Besides, regarding

solvents employment, their absence in solvent-free systems has aroused as an interesting operational alternative

because of the minimisation of biodiesel downstream processes and the avoidance of hazardous solvents, making

the overall biotransformations more cost-effective and environmentally friendly .

Lately, the joint employment of both 1,3-regiospecific and non-specific lipases have been researched in order to

accelerate biodiesel reaction rates and obtain higher yields . Lee et al.  reported yields close to 100% in 2-h

reaction and outstanding operational stabilities when using proROL and Candida rugosa lipase (CRL). Actually, the

conversion yield was still 85% after 20 reaction cycles. In line with these results, Zeng et al.  described higher

biodiesel production rates when employing together proROL and CRL.

Regarding the scale-up of biodiesel production using ROL, Canet et al.  compared packed bed reactor (PBR)

with stirred tank reactor (STR) in biodiesel synthesis with rROL immobilised through hydrophobic adsorption.

Results showed a higher reaction rate with STR than PBR but, just the opposite outcome when operational stability

was the analysed trait. Other authors have also employed PBRs  or even more genuine reactors such

as the magnetically stabilised fluidised bed reactor  or three-phase bioreactors . However, there are not

many works related to the scale-up of biodiesel production with ROL considering the vast amount of research

papers published dealing with this biocatalyst. Therefore, more research in this field could be relevant for future

projects.

4.2. Structured Lipids Production
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Fats and oils are consumed in daily diets as an important source of energy, essential fatty acids and fat-soluble

nutrients. Their functional, nutritional and organoleptic properties depend on their composition in saturated and

polyunsaturated fatty acids, fatty acid chain length and on the distribution of the different fatty acids in the

triacylglycerols (TAGs) (position sn-1, sn-3 or sn-2). Therefore, by modifying the fatty acids composition or its

profile, lipids with improved properties might be obtained, the so-called structured lipids (SL). Currently, there are

various SLs of commercial interest whose properties have been widely described (Table 5), (i) low caloric and

dietetic triacylglycerols that include TAGs with medium-chains (MMM) and TAGs with short- and medium-chain

fatty acids in sn-1 and sn-3 and a long-chain fatty acids in sn-2 position, SLS and MLM respectively; (ii) human milk

fat substitutes (HMFS), (iii) cocoa butter equivalents (CBE), (iv) trans- free plastic fats, (v) triacylglycerols rich in

specific long-chain and polyunsaturated fatty acids (PUFAs) and recently, even (vi) diacylglycerols (DAG) and

monoacylglycerols (MAG) have been considered as SLs .

Table 5. Definition and properties of the main commercially relevant structured lipids.

SL Type Definition Properties Ref.

Low caloric and

dietetic TAGs

Present lower caloric value than

conventional oils and fats.

SLS-, MLM- and MMM- type

TAGs.

M and S fatty acids present lower

caloric value than their

counterparts L.

M fatty acids have lower tendency

to get accumulated.

Released M fatty acids can be

directly absorbed and provide

readily energy in the liver.

Human milk fat

substitutes (HMFS)

Mimic the fatty acid profile of

human milk.

Contain oleic (30–35%), palmitic

(20–30%), linoleic (7–14%) and

stearic acids (5.7–8%).

Palmitic acid mainly in sn-2

position.

Promote palmitic acid absorption

as 2-monoacylpalmitate

Promote calcium absorption
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Cocoa butter

equivalents (CBE)

Mimic the scarce natural cocoa

butter

Mainly formed by saturated fatty

acids (stearic and palmitic acids)

in sn-1,3 and monounsaturated

fatty acids (oleic acid) in sn-2

position.

Desirable polymorph is β form

Similar organoleptic properties to

cocoa butter

Trans-free plastic

fats

Mimic trans fatty acids containing

hydrogenated vegetable oils.

Avoid potential cardiovascular

diseases caused by trans fatty

acids.

TAGs rich in

specific long-chain

and

polyunsaturated

fatty acids (PUFAs)

Modified TAGs containing a

combination of n-3 and n-6

PUFAs to enhance nutritional

values.

Mainly eicosapentaenoic (EPA)

and docosahexaenoic acid

(DHA) are employed.

EPA decreases blood viscosity,

platelets aggregation and

promotes vasodilation.

DHA promotes sensorial and

neuronal maturation in babies.

MAGs and DAGs

Modified lipids containing one or

two fatty acids linked to a

glycerol

Non-ionic surfactants capable of

using as emulsifiers in the food

industry.

1,3-DAGs reduce serum TAGs

level and supress body fat

accumulation

SLs production can be carried out through chemical or enzymatical processes, the latter having several

advantages when compared to chemical catalysis . Hence, in the same way as stated for biodiesel synthesis in

the previous section, enzymatically catalysed reactions allow milder reaction conditions what in this case, as well

as lowering energy consumption, might lead to a reduction in the loss of original attributes of temperature-sensitive

substrates and products. Moreover, through enzymatic catalysis, the use of deleterious solvents can be avoided
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enabling a safer and more environmentally friendly food production. However, the most remarkable advantage of

lipase employment in this biotransformation is their specificity and selectivity . Concretely, 1,3-regiospecific

lipases like ROL arouse a keen interest because of their capacity to only modify the sn-1 and sn-3 positions of

TAGs—even though acyl-migration phenomena might occur depending on reaction conditions.

Table 6 shows a summary of the latest published works about SLs synthesis employing ROL. Nunes et al. 

produced MLM-type SLs by acidolysis of olive oil with capric and caprylic acids. The employed biocatalysts were

rROL produced in K. phaffii and commercial native ROL (proROL), both of them covalently immobilised onto

Eupergit© C and modified Sepiolite. Noticeably, rROL showed a better performance than the native lipase, the

percentages of incorporated capric and caprylic acids were higher as well as the operational stability. In spite of the

use of pure or commercial substrates, oleaginous wastes or even non-commercially profitable oils might also be

employed for MLM-type SLs synthesis with ROL. For instance, Mota et al.  described how low-calorie SLs of

MLM-type can be produced using oil extracted from spent coffee grounds and oil from olive pomace with proROL

immobilised onto magnetic nanoparticles. In the same line, Costa et al.  synthesised MLM-type SLs with the oil

extracted from grapeseeds of Vitis vinifera L., which are a by-product of the wine industry. Moreover, instead of

residual oils, Nagao et al.  employed the oil from the oleaginous microorganism Mortierella alpina to produce

MLMs rich in arachidonic acid, a precursor of several hormones.

Table 6. Summary of structured lipids production with Rhizopus oryzae lipase as main biotcatalyst.

[193][194]

[195]

[196]

[197]

[198]

Product Substrates Reaction Type Lipase
Immobilisation

Technique
ID/OS Ref.

MLM OO + CRA Acidolysis proROL/rROL

CI onto

Eupergit C/sepiolite

(AlPO -sepiolite)

ID: 21.6%.

OS: half-life

159 h

MLM OO + CA Acidolysis proROL/rROL

CI onto

Eupergit C/sepiolite

(AlPO -sepiolite)

ID: 34.82%.

OS: half-life

136 h

MLM SCG + CA Acidolysis proROL
CI onto GA treated

MNP
ID: 50%

MLM
SCG + ethyl

caprate
Interesterification proROL

CI onto GA treated

MNP
ID: 26%
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MLM OP + CA Acidolysis proROL
CI onto GA treated

MNP

ID: 51% OS:

6.8 batches

MLM
OP + ethyl

caprate
Interesterification proROL

CI onto GA treated

MNP

ID: 46%. OS:

9.1 batches

MLM
Grapeseed

oil + CRA
Acidolysis rROL

CI onto Amberlite

IRA 96

ID: 54%. OS:

half-life 166

h

MLM
Grapeseed

oil + CA
Acidolysis rROL

CI onto Amberlite

IRA 96

ID: 69% OS:

half-life 118

h

MLM
TGA58F +

CA
Acidolysis proROL IA onto Dowex WBA ID: 64.6%

MLM TGA40 + CA Acidolysis proROL IA onto Dowex WBA ID: 62.8%

MLM
TGA55E +

CA
Acidolysis proROL IA onto Dowex WBA

ID: 64.8%

OS: 90 days

in PBR

dropped 10%

MLM OO + CRA Acidolysis rROL

CI onto Eupergit

C/IA onto Lewatit

VP OC 1600

OS: half time

2.4 batches

(54.3 h) with

Eupergit C

MLM OO + CA Acidolysis rROL CI onto Eupergit

C/IA onto Lewatit

VP OC 1600

OS: half time

10.2 batches

(234 h) with

Lewatit VP

OC 1600
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MLM OO + CRA Acidolysis rROL CI onto Eupergit  C ID: 15.5%

MLM OO + CA Acidolysis rROL CI onto Eupergit  C ID: 33.3%

MLM OO + CRA Acidolysis rROL
CI onto Amberlite

IRA 96
ID: 76.9

MLM OO + CA Acidolysis rROL
CI onto Amberlite

IRA 96
ID: 85.6%

HMFS

PA enriched

TAGs + OA

enriched

mixtures

Acidolysis proROL
IA onto Accurel

MP-1000

ID: OA in sn-

1,3 67.2% -

PA in sn-2

67.8%. OS:

no activity

loss in 10

uses (190 h)

HMFS

Lard + FFA

from EPAX

1050TG

Acidolysis rROL
CI onto Accurel

MP-1000

ID: 24 mol%.

OS: after 4

batches,

55% of

original

activity

HMFS

Tripalmitin +

FFA from

camelina oil

Acidolysis rROL

AI onto Relizyme

OD403/S/CI onto

Lewatit VP OC 1600

ID: 52%

TAGs

rich in

PUFAs

cod liver +

tuna oil +

ethanol.

Alcoholysis proROL IA onto Accurel

MP-1000

Alcoholysis

ID: 72% OS:

after 6

cycles,
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complete

deactivation.

2-MAG from

alcoholysis +

CRA

Esterification proROL
IA onto Accurel

MP-1000

ID: 95%. OS:

after 5

cycles, no

activity loss.

TAGs

rich in

PUFAs

Tuna oil +

CRA
Acidolysis proROL

IA onto Accurel

MP-1000

OS: over one

week

TAGs

rich in

PUFAs

cod liver oil +

ethanol 96%
Alcoholysis proROL

IA onto Accurel

MP-1000

Alcoholysis

Y: 78%. OS:

after 3

cycles, a

57%

decrease

cod liver oil +

1-butanol
Alcoholysis proROL

IA onto Accurel

MP-1000

Alcoholysis

Y: 78%. OS:

after 3

cycles, no

activity

decrease

Esterification:

2-MAG from

alcoholysis +

CRA

Esterification proROL
IA onto Accurel

MP-1000

Esterification

Y: 71%.

TAGs

rich in

PUFAs

Fish oil +

CRA
Acidolysis proROL Non-immobilised ID: 2.5%
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Regarding HMFS, Esteban et al.  used several commercial lipases, amongst them proROL immobilised onto

Accurel  MP-1000, to produce a TAG rich in palmitic acid in sn-2 and oleic acid in sn-1,3; the so called OPO, which

is the main component of human milk TAGs. proROL showed the best performance in oleic acid incorporation and

exhibited a high operational stability, after ten reuse cycles almost no activity loss was found. Simões et al. 

also tested different lipases for HMFS production and reported that rROL immobilised onto Accurel  MP-1000

showed a similar performance to Novozymes 435 and Lipozyme RM IM in acidolysis reaction between lard and

FFA mixture from fish oil rich in docosahexaenoic acid. Besides, Faustino et al.  immobilised rROL produced in

K. phaffii onto two different supports, Lewatit VP OC 1600 and Relizyme OD403/S, and applied the formed

biocatalysts in the production of HMFS rich in polyunsaturated fatty acids (PUFAs). The acidolysis reaction was

carried out in solvent-free system between tripalmitin and FFAs (mainly linoleic and linolenic acids) from camelina

oil, which proved to be a good source of PUFAs. According to the authors, the results obtained with rROL

immobilised onto Lewatit VP OC 1600 were comparable to the commonly used commercial lipase Lipozyme RM

IM.

Triacylglycerols rich in long-chain and polyunsaturated fatty acids have also been produced with ROL. In most of

the cases, these SLs’ production is based on a two-step process in order to minimise the acyl migration

phenomena . In the first step, through alcoholysis reaction, 2-monoacylglycerols (2-MAGs) are obtained from

oils containing TAGs rich in PUFAs or long-chain fatty acids in the mentioned sn-2 position, usually fish oils. Then,

these 2-MAGs are esterified with other relevant FFA to obtain the nutritionally interesting TAGs rich in PUFAs. For

instance, Muñio et al.  studied the performance of different commercial lipases, including proROL immobilised

onto Accurel  MP-1000, in the process of alcoholysis of tuna and cod oil to obtain 2-MAGs and then, carry out their

subsequent esterification with capric acid. In alcoholysis reaction the commercial lipase Novozyme 435 showed a

better operational stability than Lipase D (commercial proROL), although the latter exhibited higher reaction yield.

During esterification reaction, Lipase D obtained the highest SLs percentage (over 90%) in the mixture. Moreover,

no loss in proROL activity was observed after at least five reaction cycles. Hita et al.  and Rodriguez et al. 

reported similar results with immobilised proROL.

With respect to CBE, although Ray et al.  described the kinetics of the acidolysis of high oleic sunflower oil with

stearic–palmitic acid mixtures that, after further fractionation of the product, could be potentially used in CBE

formulations, ROL has not been extensively used for CBE production. Therefore, this subject might be a great

HMFS
Milkfat +

SYO
Interesterification proROL

EI into polysiloxane-

PVA

ID: 8.14%.

OS: after 10

batches, no

activity loss

CBE
SO + SA-PA

mixtures
Acidolysis proROL

IA onto Accurel

MP-1000
 

[209]

®
[210]

[202]

®

[203]

®

[204]

[211]

[205]

®

[206] [207]

[210]



Rhizopus oryzae Lipase | Encyclopedia.pub

https://encyclopedia.pub/entry/3491 38/68

research target for future projects, as well as DAG and MAG synthesis, which have not been specifically treated

but just as a minor topic during other products synthesis, like biodiesel.

4.3. Flavour Esters Production

Flavour and aromatic esters are widely found in nature and have pleasant organoleptic attributes, including fruity,

floral, spicy, creamy or nutty aromas. These traits made them suitable as ingredients for food, beverages,

cosmetics, pharmaceuticals, chemicals and personal care products, like perfumes, body lotions, shampoos and

other toiletries . In general, most of the flavour and fragrance compounds are produced through extraction

from their natural source, usually fruits, plants and flowers. However, they are found in the environment in low

concentrations making the extraction a costly process and not viable to fulfil their growing demand. Therefore,

chemical and enzymatic synthesis procedures have aroused to solve flavour esters scarcity . Noticeably,

the latter exhibits a significant advantage—notwithstanding the already explained benefits of enzymatic synthesis

over chemical one in the previous sections—which is the capacity to label the obtained products as natural

according to European Legislation (EC 1334/2008) if and when the employed reactants are also natural. Thereby,

the use of enzymes satisfies consumers trend towards natural products and boosts economic value of the obtained

flavour esters . In fact, as well as ROL, other lipases have been used for flavour esters production, for instance,

the commercial Novozym  435 (Candida antartica lipase B) , Candida rugosa lipase  and

Burkholderia cepacia lipase .

Ethyl butyrate is an important component of many fruit flavours such as pineapple, passion fruit and strawberry

. The enzymatic synthesis of this compound can be carried out through esterification of butyric acid and

ethanol. Guillen et al.  immobilised rROL onto three different supports, EP100, Eupergit CM and Octadecyl-

Sepabeads to test them in this esterification reaction. In terms of reaction rate and yield, rROL immobilised onto

EP100 showed the best performance. However, rROL immobilised onto Octadecyl-Sepabeads exhibited the

highest operational stability. Consequently, this biocatalyst was used for further research in which the effects of

butyric acid and ethanol concentration were studied through DoE strategy to maximise the reaction rate and final

yield . The obtained results indicated that the suitable acid:alcohol ratio for maximum yield was 1.45 and that

the higher the butyric acid concentration the higher the reaction rate. However, as previously described by Grosso

et al. , elevated concentrations of butyric acid led to enzyme deactivation.

Butyl acetate is another flavour ester with resembling organoleptic properties to pineapple flavour whose

production with ROL was reported by Ben Salah et al. . The synthesis of this compound was carried out

through esterification reaction of butanol and acetic acid with immobilised proROL onto Celite 545—as preliminary

results of the reaction with free enzyme showed poor yield and they were clearly exceeded by the immobilised

biocatalyst. According to the authors, solvent-free reaction was chosen as the most suitable strategy because of

the easier product purification and lower toxicity and inflammability. In these conditions, a maximum yield of 60%

was obtained and the biocatalyst was stable for three consecutive cycles without a decrease in synthesis activity.
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Besides esterification, transesterification reaction catalysed by ROL has also been employed for flavour esters

synthesis, for example, Kumari et al.  reported isoamyl acetate ester synthesis—pleasant banana flavour—

through isoamyl alcohol and vinyl acetate transesterification with immobilised proROL. Furthermore, as stated by

these authors, the inhibitory effect of the acid  was avoided through the use of transesterification reaction with

vinyl acetate ester instead of esterification reaction with the corresponding acid. Under optimal conditions, a

conversion of 95% in 8 h of reaction was obtained including a great operational stability, after three reaction cycles

no activity loss was detected. Garlapati et al.  described the use of covalently immobilised proROL onto

activated silica to produce through transesterification reactions methyl butyrate and octyl acetate, flavour esters

with pineapple and orange odours respectively. As a result of an optimisation process, authors reached high

reaction yields in solvent-free system, 70.42% in 14 h and 92.35% in 12 h for methyl butyrate and octyl acetate

respectively. Moreover, in both cases, the biocatalyst was reusable for five times retaining a relative activity of more

than 95%. Transesterification reaction was as well employed for citronellol esters synthesis with immobilised

proROL into HPMC–PVA polymer (hydroxypropyl methyl cellulose—polyvinyl alcohol) and in supercritical carbon

dioxide reaction medium . For the three studied flavour esters (citronellol acetate, citronellol butyrate and

citronellol laurate) final yields over 90% were achieved indicating the suitability of this biocatalysts and the

proposed system for these biotransformations.

4.4. Resolution of Racemic Mixtures

Enantiomerically pure compounds are very attractive for the preparation of a wide range of products, particularly in

food and pharmaceutical industries where the desired organoleptic properties or effects might be only related to

one of the isomers. Therefore, racemic resolution processes become relevant and arouse the interest in lipases

considering the enantioselectivity and specificity of these enzymes .

Palomo et al.  employed proROL to carry out the enzymatic resolution of (R)-glycidyl butyrate because of its

importance in linezolid synthesis. This product is already sold as a treatment for multidrug resistant Gram-positive

infections. According to these authors, they followed the ‘conformational engineering’ strategy, that is, different

techniques for proROL immobilisation were employed. This way, the enzyme structure would have different rigidity

or the microenvironment surrounding the enzyme would alter the exact shape of the open form of the lipase

influencing its catalytic performance. Amongst the three different biocatalysts formed, the best enantiomeric excess

(ee) was obtained with proROL immobilised through adsorption on dextran sulphate-coated sepabeads, 99% ee

with a 55% conversion.

Benzoin is a relevant α-hydroxy ketone that might act as building block in organic synthesis. Songür et al. 

described its enantioselective production from benzoin acetate through the employment of R. oryzae cell

homogenates. The objective of using cell homogenates was to combine the enantioselective hydrolysis of proROL

with the racemisation process of the racemase of R. oryzae in order to increase the ee and conversion values. This

way, a final conversion of (S)-benzoin close to the 100% and 96% ee was achieved.

[224]

[225]

[226]

[227]

[228][229]

[230]

[231]
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Covalently immobilised proROL onto Lewatit-aldehyde support has been reported as an adequate biocatalyst for

asymmetric hydrolysis of dimethyl 3-phenylglutarate . Under the best conditions, it was possible to obtain the

(R)-methyl-3-phenylglutarate with a 92% ee and an yield in monoester of 97%.

(S)-enantiomer of ibuprofen is 160 more active than its (R)-enantiomer, which can even cause side effects in the

gastrointestinal tract. Therefore, obtaining the adequate enantiomer becomes crucial in this case. Yousefi et al.

 reported the use of immobilised proROL onto octadecyl sepharose to carry out the enantioselective resolution

of racemic ibuprofens esters.

The racemic resolution of (R,S)-1-phenylethanol to produce (S)-1-phenylethanol, a chiral building block, was

carried out with proROL-displaying yeast whole cell biocatalyst, that is, a S. cerevisiae strain genetically modified to

display proROL on the cell surface. After 36 h of reaction, significant results were obtained, 97.3% yield and 93.3%

ee . The same biocatalyst was employed to catalyse the optical resolution of the pharmaceutical precursor

(R,S)-1-benzyloxy-3-chloro-2-propyl monosuccinate. In this case, the operational stability of the biocatalysts was

assessed and it was stable after at least eight reaction cycles .

Abbreviations
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28proROL-gene
Gene encoding a truncated prosequence of Rhizopus oryzae lipase 28 C-terminal amino

acids fused to the N-terminal of the mature lipase region

2-MAG 2-monoacylglycerol

ALO Alperujo oil

BR Batch Reactor

C TAG or FFA conversion (%)

CA Capric acid

CBE Cocoa butter equivalents

CI Covalently immobilised or stabilised biocatalyst through crosslinking
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CO Canola oil

CRA Caprylic acid

CRL Candida rugosa lipase

DAG Diacylglycerol

DoE Design of experiments

EDTA Ethylenediaminetetraacetic acid

ee Enantiomeric excess

entire-proROL Rhizopus oryzae lipase including the whole prosequence and mature sequence

EPAX 1050TG TAG rich in omega-3 PUFAs

EtOH Ethanol

FAME Fatty acid methyl esters

FFA Free fatty acid

HMFS Human milk fat substitutes

IA Immobilisation through adsorption

ICL Isocitrate lyase
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ID Incorporation degree (%)

IE Immobilisation through physical entrapment

JO Jatropha oil

KO Karanja oil

L Long-chain fatty acid

M Medium-chain fatty acid

MAG Monoacylglycerol

MeOH Methanol

MSFBR Magnetically-stabilised fluidised bed reactor

Mut Methanol utilisation plus phenotype

Mut Methanol utilisation slow phenotype

MW Molecular weight (kDa)

NBS N-Bromosuccinimide

OA Oleic acid

OO Olive oil

+

s
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OP Olive pomace

OPO TAG with oleic acid in sn-1,3 positions and palmitic acid in sn-2 position.

OS Operational stability

PA Palmitic acid

P Inducible Alcohol oxidase promoter

PBR Packed bed reactor

PFL Pseudomonas fluorescens lipase

PMSF Phenylmethylsulfonyl fluoride

proROL
R. oryzae lipase containing the N-terminal of mature sequence attached to 28 C-terminal

amino acids of the prosequence

proROL-gene
Gene encoding the prosequence of 97 amino acids fused to the N-terminal of the mature

lipase region of 269 amino acids

PUFA Polyunsaturated fatty acids

PVA Polyvinylalcohol

RO Rapeseed oil

ROL Rhizopus oryzae lipase

rROL Rhizopus oryzae lipase containing mature sequence of R. oryzae lipase

AOX
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rROL-gene Gene encoding the mature lipase

S Short-chain fatty acid

SA Stearic acid

SCG Spent coffee ground

SGLB Solid gas liquid bioreactor

SL structured lipid

SLLB Solid liquid liquid bioreactor

SO Sunflower oil

STR Stirred tank reactor

SYO Soybean oil

TAGs Triacylglycerols

TGA40 commercial oil

TGA55E Hydrolysed TGA40 oil

TGA58F Mortierella alpina single-cell oil

TPB Three phase bioreactor
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