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A series of adsorbents were tailored for selective extraction of rare earth elements (REE) and late transition metals
(LTM) via grafting of ligands bearing specific N- and S-donor functions. All obtained adsorbents showed relatively
quick uptake kinetics and high adsorption capacity 0.5 to 1.8 mmol/g, depending on the function and the target
metal ion. The adsorption equilibrium data analyzed and fitted well to Langmuir isotherm model revealing
monolayer adsorption process on homogeneously functionalized silica nanoparticles (NPs). Most of the employed
ligands demonstrated higher affinity towards LTM compared to REE, related to the nature of the functional groups

and their arrangement on the surface of nanoadsorbent.

recycling silica nanoadsorbents adsorption REE LTM

| 1. Introduction

During the past few decades, there has been a continuous increase in the applications of Rare Earth Elements
(REE) and their alloys, making them critical elements for development of modern industries L. The main target
markets using REEs include magnets, metallurgy, catalysts, polishing powders, batteries, mobile phones and other
high-technology gadgets. With their growing demand and continuous supply risk, urban mining of REEs from
different end-of-life products and industrial waste has gained increasing attention 2. As such, permanent magnets,
which have various applications in the development of new technological devices as well as for green energy
production, are one of the most promising secondary sources of REEs that can be recycled and reused [,
Common Rare Earth-based magnets include Neodymium-iron—-boron (FeNdB) and Samarium-cobalt (SmCo)
magnets (4. One of the key challenges in the recycling of magnet materials lies in the need to separate REE from
Late Transition Metals (LTM), which form their constituents or major materials of their casings . The most
common technology for REE separation is acidic leaching with different leaching agents such as hydrochloric and
sulfuric acids [, Iron is the major component in FeNdB and in the casing of magnets in electronics. It needs to be
removed in the step previous to the separation of all other components, for both economic and technical reasons.
The well-established approaches for separation of iron from leachates include either precipitation of iron hydroxide
during controlled elevation of pH & or the precipitation of all other components apart from iron by addition of oxalic
acid and organic base 2. The precipitate can then be calcined and re-dissolved in acid. Subsequent separation of
the components can be achieved by solvent extraction, ion exchange, or adsorption 19, Most of the established
industrial methods require, however, repeated steps to obtain the desired purity, thus generating large amounts of

hazardous and, in the case of primary ore treatment, even radioactive waste 1112 As an alternative to the

https://encyclopedia.pub/entry/21537 1/8



Tailoring Nanoadsorbent Surfaces for Recycling of LTM | Encyclopedia.pub

traditionally used methods, the application of solid-phase extraction (SPE) using nanosized functional adsorbents
has been proven to be an effective and more environmentally friendly method for REE recovery 131, Various types
of nanosorbents have been synthesized for SPE recovery of REEs [Z4I[LI16IL7]18][191[20121]  Several reviews have
already been devoted to the discussion of the advantages and challenges in the application of functional solid
adsorbents for REE separation [2223] Recent works have shown that organic—inorganic functionalized silica
nanoparticles possess great adsorption capacity and selectivity towards many metal ions, including heavy metals
and REEs 24, Functional groups such as iminodiacetic acid (IDA), diethylenetriaminepentaacetic acid (DTPA),
ethylenediaminetetraacetic acid (EDTA) and triethylenetetraminehexaacetic acid (TTHA) were grafted on dense
SiO, nanoparticles as well as SiO, core—shell magnetic nanoparticles and tested for different REEs adsorption and
separation. High adsorption capacities of up to 300 mg of RE3*/g were reached, and distinct selectivity trends

towards different REEs depending on the complexonate [221[26]127],

The majority of earlier successfully applied ligands belonged to the classes of either complexons, i.e., amino
carboxylic acids 28 or crown ethers/cyclenes. These types of ligands revealed strong affinity to both REE and
LTM. In this entry, the new ligands (N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane L1 and N-(2-Aminoethyl)-3-
Aminolsobutylmethyl Dimethoxysilane L4—a derivative of ethylene diamine, known for high affinity to Ni?* and
Cu?* and, to a lesser extent, for Co2* [2ABABL: 2_(2-Pyridilethyl) Thiopropyltrimethoxysilane L2—a derivative of
pyridine with potentially good affinity to LTM and also a sulfur bridge [32B3: and Triethoxy(3-
isothiocyanatopropyl)silane L3 and Triethoxy(3-thiocyanatopropyl)silane L5—derived from isothiocyanate with
potential affinity to Ni2* and Co?* [24l were selected and grafted on SiO, nanoparticles to achieve selectivity for

separating LTM from REEs in mixed solutions (Figure 1).
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Figure 1. Chemical structure of selected ligands: (A) L1, (B) L2, (C) L3, (D) L4 and (E) L5.

| 2. Adsorption Equilibrium Isotherms

The effect of the concentrations of LTM (Co and Ni) and of RE3* (Nd and Sm) on adsorption efficiency was

investigated in batch studies at room temperature. The results showed that the adsorbed amount of metal ions on
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grafted SiO, NPs increased with increasing the initial metal concentration and reached to the maximum adsorption
capacity at higher concentrations due to saturation of the binding sites (Figure 2). The maximum adsorption
capacities are summarized in Table 1. Based on the results, SiO, L1 demonstrated higher adsorption capacities
for all LTM and REEs, which is in agreement with TGA results, considering the grafted amount of the ligands per
unit mass of SiO, NPs was higher compared to SiO, L2 and SiO, L3. SiO, with both L2 and with L3 had similar
maximum adsorption capacities for most of the metal ions, only for Co adsorption did SiO, NPs grafted
with L3 ligands demonstrate a slightly higher adsorption capacity. However, acid-treated
SiO, with L3 (SiO,_L3_acid) and L5 (SiO,_L5_acid) showed improved adsorption by increasing their maximum
capacities by twice for Co, Nd, Sm, and by almost five times in the case of Ni. According to the literature, sulfur-
and amine-containing groups possess higher selectivity towards LTM, which can explain the higher adsorption
capacities towards Ni and Co for most of these ligands [22/[281[37](38][39][40]
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Figure 2. Langmuir adsorption isotherms of (A) Sm, (B) Nd, (C) Co and (D) Ni ions onto functionalized silica

nanoparticles.

Table 1. Maximum adsorption capacities of grafted SiO, NPs towards REEs and LTM.
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Sample Ni (mmol/g) Co (mmollg) Nd (mmolig) Sm (mmol/g)
Sio, L1 1.66 1.83 0.83 1.10
SiOo, L2 0.55 0.66 0.50 0.56
Sio, L3 0.58 0.75 0.67 0.66
Sio, L4 0.57 0.67 0.44 0.77
SiO, L5 0.34 0.68 0.44 0.68

SiO, L3 acid 1.00 1.33 0.75 0.83

SiO, L5_acid 1.66 1.33 0.75 1.00
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Table 2. Maximum adsorption capacities of different adsorbents towards REEs and LTM. _
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