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The existence of indoor air pollutants—such as ozone, carbon monoxide, carbon dioxide, sulfur dioxide, nitrogen dioxide,

particulate matter, and total volatile organic compounds—is evidently a critical issue for human health. Over the past

decade, various international agencies have continually refined and updated the quantitative air quality guidelines and

standards in order to meet the requirements for indoor air quality management. This entry first provides a systematic

review of the existing air quality guidelines and standards implemented by different agencies, which include the Ambient

Air Quality Standards (NAAQS); the World Health Organization (WHO); the Occupational Safety and Health

Administration (OSHA); the American Conference of Governmental Industrial Hygienists (ACGIH); the American Society

of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE); the National Institute for Occupational Safety and

Health (NIOSH); and the California ambient air quality standards (CAAQS). It then adds to this by providing a state-of-art

review of the existing low-cost air quality sensor (LCAQS) technologies, and analyzes the corresponding specifications,

such as the typical detection range, measurement tolerance or repeatability, data resolution, response time, supply

current, and market price. Finally, it briefly reviews a sequence (array) of field measurement studies, which focuses on the

technical measurement characteristics and their data analysis approaches.
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1. Introduction

The WHO reported that poor air quality caused 4.2 million deaths in 2016, of which, primarily, 17% were due to strokes,

25% were due to COPD, and 26% were due to respiratory disease . It is evident from many studies that the

concentration levels of indoor air pollutants are two to four times higher than those of outdoor air pollutants . In the

U.S., on average, people spend 22.25 h per day inside buildings, and 1.44 h in cars or other transportation modes .

With higher concentrations of pollutants inside buildings, IAQ is one of the world’s highest environmental health risks ,

which cannot be ignored.

The impact on human health owing to the indoor environment is, broadly speaking, either BRI or SBS. BRI relates to

symptoms that are clinically defined, which are diagnosed with directly airborne building contaminants . On the

other hand, SBS is a collection of symptoms for which the cause is unclear . It is to be noted that SBS is a

consequence of poor indoor air quality . Besides this, the symptoms caused by psychological illnesses—such as

headaches, fatigue, nausea, hyperventilation, and fainting—are referred to as Mass Psychogenic Illness (MPI) .

Building-associated illnesses not only cause symptoms, but can also cause an enormous economic loss. In the U.S., SBS

affects 10 to 25 million people, and results in an estimated $82 billion to $104 billion loss every year, owing to productivity

loss . The US EPA estimated a $140 billion annual direct medical expenditure related to IAQ problems 

.

SBS has become a widely-studied subject in recent years; the following health manifestations have been identified by

medical studies: anxiety, depression, environmental discomfort and job strain (psychological symptoms); asthma,

allergies, malaise, headache, throat dryness, coughs, sputum, ocular issues, rhinitis, wheezing, skin dryness, and eye

pain (physical symptoms/psychosomatic symptoms) . Klas et al.  found that SBS is related to temperature, air

intake, building dampness, exposure to static electricity, indoor smoke, noise, and the building’s age. In addition, the level

of physical response is related to age, employment duration, asthma symptoms, and psychological states.

The contributors of SBS and BRI can be divided into four categories: (1) physical (e.g., temperature, humidity, ventilation,

illuminance, noise, air quality, etc.); (2) biological; (3) chemical (e.g., radioactive substances, MVOCS, formaldehyde,

plasticizer, fine dust, etc.) concentrations; (4) psychosocial and individual traits (e.g., gender, age, atopy, hereditary

disease, smoking, psychological state, etc.) . The indoor thermal comfort criteria were recommended by the
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ASHRAE Standard 55-2017, which specifies an indoor operative temperature between 68.5 F and 75 F in the winter, and

between 75 F and 80.5 F in the summer . Similarly, the recommended indoor relative humidity given by the by US EPA

is between 30% and 60%, in order to reduce mold growth .

The presence of indoor air pollutants is a major factor that directly affects human health . Indoor air pollutants may

include O , CO, CO , SO , NO , particulate matter (PM), and TVOC, which can cause tiredness, Acute Respiratory

Infections (ARI), COPD, and lung cancer .

2. Indoor Air Quality, the Vulnerable Population, and Asthma

A 2015 report showed that air pollution does not affect everyone in the same way; certain vulnerable populations (e.g.,

children, the elderly, and cardiopulmonary patients, etc.) are more susceptible than others . The US EPA defined the

‘risk population’ as being those who possess a significantly higher probability of developing a condition, illness or other

abnormal status, and divided them into five groups, namely: (1) children aged less than or equal to 13 years; (2) older

people aged greater or equal to 65 years; (3) a young person with asthma, who is less or equal than the age of 18 years;

(4) legal adults with asthma; (5) people with COPD . Children and older people are more sensitive than others with

regards to indoor air pollution . While the immune and metabolic systems of children are still developing,

and their organs are immature, they are exposed to air pollutants due to which they suffer from frequent respiratory

infections . Older people are affected by IAQ due to weaker immune systems, undiagnosed respiratory conditions,

and cardiovascular health conditions. A hazardous substance can aggravate heart diseases, strokes, and lung diseases

such as chronic bronchitis and asthma .

Asthma is a chronic disease that often causes an exacerbation of disease activity, some of which result in hospitalizations.

Air quality measures—such as PM , NO , O , and dampness-related contaminants—play a significant role in asthma

exacerbation, as well as disease progression. Asthmatic children spend 60% of their waking hours in school. A recent

large-scale study  showed that co-exposure to elevated endotoxin levels and PM  was synergistically correlated with

increased emergency room visits, especially for asthma among children. Exposure to higher concentrations of endotoxin

and NO  was also synergistically associated with increased asthma attacks, despite below-normal geometric mean

concentrations of PM , O  and NO compared to EPA NAAQ standards . A 2015 update to the 2000 review of the

Institute of Medicine  suggested that—in addition to endotoxin levels—dampness, and dampness-related agents are

also important environmental quality indicators for asthma.

According to the ALA ‘State of the Air  2020’ report, 45.8% of people in the U.S. live in counties with unhealthy levels of

air pollution; among these, 22 million people are elderly (equal or over age 65), and 34.2 million are children (less than

age 18); 2.5 million of the children, and more than 10.6 million of the elderly people, have asthma; 7 million people have

COPD; 77,000 people have lung cancer; 9.3 million have cardiovascular issues; and 18.7 million live in poverty .

3. Air Quality Sensors, Measurement Tolerances, and Ranges

In recent years, LCAQS technology has emerged from several laboratories for practical application, as they can be used

to support real-time, spatial, and temporal data resolution for the monitoring of air concentration levels .

Additionally, more and more companies provide their own LCAQS products. The principles of operation for the low-cost

gas-phase sensors are typically based on five major components, which are OPC, MOS, EC, NDIR, and PID .

Studies have shown that modern LCAQS provide useful qualitative information for scientific research, as well as for end-

users . However, due to the embedded technical uncertainties and lack of cross-validation and verification, there

are certain limitations when comparing them to the expensive conventional equipment . The US EPA has

colloquially identified such devices to be low cost when their costs are less than US $2500, because this is often the limit

when they are considered for capital investment by scientists and end-users . The price includes the sensor module, its

networks, the interactive platform, and other supply services. Therefore, hereafter, we assert that LCAQs should be less

than US $500. Table 1 summarizes a series of commercially available LCAQs for primary air pollutants, such as O , CO,

CO , SO , NO , PM, TVOCs. Furthermore, the specifications from the datasheet provided by the sensor companies—

such as the repeatability, measuring range, circuit voltage, and response times—have been listed. The price of these

LCAQS ranges between US $1 and $500, and they are capable of detecting an acceptable range of concentrations of

each pollutant identified by the existing guidelines (See Table 2).

Table 1. Commercially available LCAQs for the primary air pollutants.
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Measured
Parameter

Example
Product

Manufacturer
Measurement
Tolerance/Repeatability

Measuring
Range

Circuit
Voltage

Response
Time

Approx.
Price
(USD).
2019

O

SR-G04 

BW

Technologies/

Honeywell

±5% 0~1 ppm
Not

Provided

Not

Provided
≈$500

uHoo-O  uHoo
±10 ppb or

5% of reading
0~1000 ppb 5.0 V

Not

Provided

$300–

500

ME3-O  Winsen <2% (/Month) 0~20 ppm
Not

Provided
≤120 s

$100–

300

DGS-O  968-

042 
SPEC ±15% 0~5 ppm 3.3 v <30 s $50–100

ULPSM-O3

968-005 
SPEC ±2% 0~20 ppm

2.7 V~3.3

V
<30 s $1–50

ZE25-O Winsen Not Provided 0~10 ppm
3.7 V~5.5

V
≤90 s $1–50

MQ131 Winsen Not Provided
10~1000

ppm
≤24 V DC

Not

Provided
$1–50

MiCS-2610 
SGX

SensorTech
Not Provided

10~1000

ppb
5.0 v

Not

Provided
$1–50
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CO

uHoo-CO uHoo ±10 ppm
0~1000

ppm
5.0 v

Not

Provided

$300–

500

CO-B4 Alphasense ±1 ppm
0~1000

ppm

Not

Provided
1 s

$100–

300

MNS-9-W2-GS-

C1
Monnit

± 2% of reading

 or 1 ppm

0~1000

ppm
2.0~3.6 v

<40 s (at

20 °C)

$100–

300

DGS-CO 968-

034 
SPEC

< ±3% of

reading or 2 ppm

0 to 1000

ppm
3.3 v <30 s $50–100

MiCS-4514/

CJMCU4541
SGX

SensorTech
Not Provided

1~1000

ppm
5.0 v

Not

Provided
$1–50

TGS 5342 FIGARO ±10 ppm
0~10,000

ppm
5.0 v 60 s $1–50

TGS 2442 FIGARO Not SProvided
30~1000

ppm
5.0 v 1 s $1–50

HS-134 Sencera Not Provided
20~1000

ppm
5.0 v <2 s $1–50

MiCS-5524 
SGX

SensorTech
Not Provided

1~1000

ppm
5.0 v <25 s $1–50

TGS5042 FIGARO < ± 10 ppm
0~10,000

ppm
5.0 v 5.0 v $1–50

MQ-7 HANWEI Not Provided
20~2000

ppm
5.0 v ≤150 s $1–50
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CO
uHoo-CO uHoo

±50 ppm or

3% of reading

400~10,000

ppm
5.0 v

Not

Provided

$300–

500

GC0028/

CM-40301 

The

SprintIR -6S

±70 ppm

± 5% of reading
0–5%

3.25~5.5

v

Flow Rate

Dependent

$100–

300

AW6404
AWAIR

±75 ppm

(400 to 6000 ppm)

0~4000

ppm
5.0 v 3 min

$100–

300

B-530 ELT SENSOR
±30 ppm

±3% reading

0~50,000

ppm
9~15 v 120 s

$100–

300

FBT0002100 Foobot

(Airboxlab)

±1.0 ppm

(400 to 6000 ppm)

400~6000

ppm

Not

Provided

Not

Provided

$100–

300

8096-AP Air Mentor Pro ± 5%
400~2000

ppm
3.7 v

Not

Provided

$100–

300

Yocto-CO2 Yoctopuce ± 30 ppm ± 55%
0–10,000

ppm
4.75~5.25

2 s @ 0.5

l/min

$100–

300

NWS01-EU Netatmo
± 5%

(1000 to 5000 ppm)

0~5000

ppm
5.0 v

Not

Provided

$100–

300

CozIR -LP2 GSS ± 30 ppm ± 3% reading
0–5000

ppm

3.25–5.5

v
30 s

$100–

300

K-30 CO2Meter
±30 ppm/

 ±3% of reading

0~5000

ppm
4.5–14 v

2 s @ 0.5

l/min
$50–100

D-400 ELT SENSOR
±30 ppm

±3% of Reading

0~2000

ppm
4.75~12 v 30 s

$100–

300

GC-0015 MinIR™
±70 ppm

± 5% of reading
0–5%

3.3 ± 0.1

v
4~2 min

$100–

300

ELT T110 ELT SENSOR
± 50 ppm

±3% reading

400~2000

ppm

3.2

v~3.55 v
90 s $50–100

MT-100 ELT SENSOR
±70 ppm

 ±3% of reading

0~10,000

ppm
3.5~5.2 V 120 s $50–100

S-300 ELT SENSOR
±30 ppm,

±3% measure

0~2000

ppm

5.0 V ±

5%
60 s $50–100

T6713 Telaire ±3%
0~5000

ppm
4.5–5.5 v 3 min $50–100

T6615 Telaire ± 10% of reading
0~50,000

ppm
5 v 2 min $50–100
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MG811 Winsen ±75 ppm
350~10,000

ppm
7.5–12 v

Not

Provided
$1–50

TGS4161
FIGARO ±20% at 1000 pm

350~10,000

ppm

5.0 ± 0.2

v
1.5 min $1–50

MH-Z16 NDIR

CO
Winsen

±50 ppm

± 5% of reading

0~5000

ppm
3.3 v 30 s $1–50

MH-Z19 Winsen
± 50 ppm

±5% reading

‎0~5000

ppm
3.3 v 60 s $1–50

SO

B4 SO  Alphasense ±5 ppb 0~100 ppm 3 v 30 s
$100–

300

ME4-SO Winsen ±2% 200 ppm
Not

Provided
30 s

$100–

300

DGS-SO  968-

038 
SPEC ±15% 0~20 ppm 3.0 v 30 s $50–100

EC-4SO2-2000 Qingdao

Scienoc

Chemical

±2%
0~2000

ppm

Not

Provided
60 s $50–100

MQ-136 HANWEI ±2% 1–100 ppm 5 v ± 0.1 60 s $1–50

FECS43-20 FIGARO ±2% 0~20 ppm
Not

Provided
25 s

Not

Provided

NO

uHoo-NO uHoo
± 10 ppb

±5% of reading
0~1000 ppb 5.0 v

Not

Provided

$300–

500

DGS-NO  968-

043 
SPEC Sensors ±15% 0~10 ppm 3 v 30 s $50–100

Mics-6814 
SGX

SensorTech
±10 ppb

0.05–10

ppm
5.0 v 30 s $1–50

MiCS-4514/

CJMCU4541
SGX

SensorTech
Not Provided

1~1000

ppm
5.0 v

Not

Provided
$1–50

MiCS-2714 
SGX

SensorTech
Not Provided

0.05~10

ppm
4.9~5.1 v 30 s $1–50

B4 NO Alphasense ±12 ppb 0~50 ppm 3.5~6.4 v 25 s $1–50
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PM

uHoo-PM uHoo ±20 μg/m
0~200

µg/m
5.0 v

Not

Provided

$300–

500

DC1100 Pro Dylos Not Provided
0~1000

µg/m
9 v

Not

Provided

$100–

300

OPC-N2 Alphasense Not Provided
0.38~17

µm
4.8~5.2 v

Not

Provided

$100–

300

FBT0002100 Foobot

(Airboxlab)
±20%

0~1300

µg/m³

Not

Provided

Not

Provided

$100–

300

AW6404
AWAIR

±15 µg/m3

15% of reading

0~1000

µg/m
5 V/2.0 A

Not

Provided

$100–

300

8096-AP Air Mentor Pro Not Provided
0~300

µg/m
3.7 v

Not

Provided

$100–

300

SPS30 Sensirion ±10 μg/m
0~1000

µg/m
4.5~5.5 v 60 s $1–50

PMS7003
Plantower

±10 @

100~500 µg/m

0~500

µg/m
5.0~5.5 v 10 s $1–50

PMS5003
Plantower

±10 @

100~500 µg/m

0~500

µg/m
5.0~5.5 v 10 s $1–50

HPMA115S0-

XXX 
Honeywell ±15 µg/m

0~1000

µg/m
5 ± 0.2 v 6 s $1–50

DN7C3CA006 Sharp

Microelectronics
±0.2

25~500

µg/m3
5 ± 0.1 v

Not

Provided
$1–50

SDS011 Nova Fitness
15%

 ±10 μg/m

0.0–999.9

μg /m
5 V

Not

Provided
$1–50

Shinyei

PPD42NS Shinyei Not Provided
0~28,000

pcs/liter
5.0~5.5 v 60 s $1–50

TIDA-00378 TI Designs
75% Over

Detection Range

12~35

pcs/cm
3.3 V

Not

Provided

Not

Provided
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t-VOCs

uHoo-TVOC uHoo 10 ppb or 5% 0–1000 ppb 5.0 v
Not

Provided

$300–

500

8096-AP Air Mentor Pro Not Provided
0~300

µg/m
3.7 v

Not

Provided

$100–

300

AW6404
AWAIR ±10%

0~60,000

ppb
5.0 v 60 s

$100–

300

FBT0002100 Foobot

(Airboxlab)
±10% 0~1000 ppb

Not

Provided

Not

Provided

$100–

300

ZMOD4410
IDT ±10%

0~1000

ppm
1.7~3.6 v 5 s $50–100

Yocto-VOC-V3 Yoctopuce Not Provided
0~65,000

ppb

Not

Provided

Not

Provided
$50–100

uThing::VOC™- Ohmetech.io ±15% 0–500 5.0 v 3 s $50–100

MiCS-5524 
SGX

SensorTech
Not Provided

10~100

ppm

Not

Provided

Not

Provided
$1–50

iAQ-100 C/

110-802 
SPEC ±2 ppm 0~100 ppm

12 ± 2

VDC
20 s $1–50

SP3_AQ2 Nissha FIS Not Provided 0~100 ppm 5 v ± 4%
Not

Provided
$1–50

TGS2602 FIGARO Not Provided 1~30 ppm 5 ± 0.2 v 30 s $1–50

MICS-VZ-87 SGX

SensorTech
Not Provided

400–2000

ppm

 equivalent

CO2

5.0 v 30 s $1–50

Table 2. Common air quality guidelines and standards.

Measured
Parameter

NAAQS/EPA
(U.S.
Enforceable)

OSHA
(U.S.
Enforceable)

WHO/

Europe

(Christopher
et al., 2017;
WHO, 2016b,
WHO, 2010)

ACGIH

ANSI/

ASHRAE
62.1

NIOSH
CAAQS
(SCAQMD)
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O

0.07 ppm

(8-h mean)

0.12 ppm

(1 h mean)

0.08 ppm

0.1 ppm
120 µg/m3

(8-h mean)

0.3 ppm

(15 min)

0.05 ppm

(heavy

work)

0.08 ppm

 (moderate

work)

0.1 ppm

 (light work)

0.2 ppm

 (work ≤ 2

h)

100

µg/m 50

ppb

(8-h

mean)

0.1 ppm

(0.2

mg/m )

0.07 ppm

(8-h)

0.09 ppm

(1-h)

CO

9 ppm

(8-h mean)

35 ppm

(1 h mean)

50 ppm

100 mg/m

(15-min

mean)

35 mg/m

(1-h mean)

10 mg/m

(8-h mean)

7 mg/m

(24-h mean)

25 ppm

(8-h)

9 ppm

(8-h

mean)

35 ppm

40

mg/m

(8-h

mean)

200

ppm

(229

mg/m )

ceiling

20 ppm,

(1-H mean)

9.0 ppm,

(8-H mean)

CO N/A 5000 ppm N/A

5000 ppm

(8-h)

30,000

ppm

(15 min

mean)

5000 ppm

300~500

ppm

(outdoor

suggest)

1000 ppm

(indoor

suggest)

5000

ppm

(9000

mg/m )

30,000

ppm

(15 min)

(54,000

mg/m3)

N/A

SO
75 ppb

(1-h mean)
5 ppm

20 µg/m

(24-h mean)

500 µg/m

(10-min

mean)

0.25 ppm

 (15 min)

80 µg/m

(Annual

mean)

2 ppm

(5

mg/m )

5 ppm

(10

mg/m )

0.25 ppm

1-H mean

0.04 ppm

(24-h mean)

NO

100 ppb

(1-h)

53 ppb

(Annual

mean)

0.1 ppm

200 µg/m

(0.1 ppm)

(1-h mean)

40 µg/m

(0.02 ppm)

(1-yr average)

0.02

(15 min)

200

µg/m

(Annual

mean)

470

µg/m

(24-hoursl

mean)

1 ppm

(1.8

mg/m )

0.18 ppm,

(1-H mean)

0.030 ppm,

(Annual

mean)

3

3
; 

3

3

3

3

3

3

3

2

3

2

3

3

3
3

3

2

3

3

3

3
3



PM

35 µg/m

(24-h mean)

12 µg/m

(Annual

mean)

5 mg/m

25 µg/m

(24-h mean)

10 µg/m

(Annual

mean)

3 mg/m

(8-h)
15 µg/m N/A

12 µg/m ,

Annual

mean

PM

155 µg/m

(24-h mean)

(Not to be

exceeded

more than

once per year

on average

over 3 years)

N/A

50 µg/m

(24-h mean)

20 µg/m

(Annual

mean)

10 mg/m

(8-h)
50 µg/m N/A

50 µg/m

(24-H

mean)

20 µg/m

(Annual

mean)

t-VOCs

200 μg/m

AQI INDEX:

0~50 GOOD

51~100

Moderate

101~150

Unhealthy for

Sensitive

Group

151~200

Unhealthy

201~300 Very

Unhealthy

301~500

Hazardous

N/A
300 μg/m

 (8-h mean.)
N/A

See full

list on:

ASHRAE

Standard

62.1

TVOC

guidance

N/A N/A
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