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Ultra-high-performance concrete (UHPC) is an advanced cement-based material with excellent mechanical properties and

durability. However, with the improvement of UHPC’s compressive properties, its insufficient tensile properties have

gradually attracted attention.
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1. Introduction

Ultra-high-performance concrete (UHPC) is one of the latest advances in concrete technology and is a new concrete

series . Compared to conventional concrete (CC), UHPC shows superior mechanical properties, durability, and ductility

after cracking . At present, there is no widely accepted definition of UHPC, but it is generally considered that its

compressive strength is ≥150 MPa and its tensile strength after cracking is ≥5 MPa . Under the same bearing capacity,

the weight of a structure made of UHPC is only 1/3~1/2 that of CC . Therefore, UHPC is often used in long-span

structures and high-rise buildings. In addition, UHPC is, furthermore, energy efficient and environmentally friendly when

considering the entire life cycle of the building .

The tensile strength is an important factor that affects the overall performance of concrete structures, and it is, therefore,

crucial to have the correct material input in the design calculations . In some projects, structural damage is often caused

by an insufficient tensile strength and compression zones that have not reached their bearing limits. Steel fibers are

crucial for improving the tensile properties of UHPC, so it is important to investigate the effect of steel fibers on the tensile

strength of UHPC. Usually, the common methods to improve the tensile properties of UHPC by steel fiber are as follows

: (a) increase the fiber content; (b) use different types of fibers; (c) increase the fiber length; (d) hybrid of

different types of fibers. However, due to the complexity of the fiber geometry and the uncertainty of the fiber distribution

direction, the tensile properties of UHPC materials vary greatly . At the same time, the physical properties of

the steel fibers and the bonding strength between the fibers and the UHPC matrix also affect the mechanical properties of

the UHPC . This is also a core factor to be considered in structural design. In addition, the steel fibers are also the

main reason for the high cost and carbon footprint of UHPC . Therefore, combing and summarizing the knowledge of

steel fibers on the tensile properties of UHPC is beneficial for improving the structural design theory of UHPC and

reducing the carbon footprint.

With the application of UHPC to engineering practice, the issue of insufficient tensile properties has received increasing

attention . By reviewing the latest reviews of UHPC, it was found that the reviews of the effect of steel fiber on the

tensile strength of UHPC lacks its influence on the splitting tensile strength , which must be

supplemented. It is very important to detect the cracks in concrete, which is usually carried out by optical means or an

extensometer . Digital image correlation (DIC) technology is a non-contact, modern optical measurement experimental

technology, which can directly measure the mechanical behavior of materials and structural surfaces. Due to its high

measurement accuracy and operation, it has gradually attracted more and more attention in the research on UHPC,

especially for the tensile behavior of steel fibers-reinforced UHPC.

2. Advantages and Significance of Steel Fibers in Concrete

Concrete is a quasi-brittle material according to its macroscopic mechanical behavior. As its strength increases, its

brittleness increases correspondingly, with the disadvantages of low tensile strength and minor ultimate elongation. To

overcome these shortcomings, many researchers have incorporated steel fibers into concrete and have proven its

feasibility . Steel fibers can improve the ductility of the cement matrix by bridging cracks, thus, improving the

brittle fracture of concrete . Usually, adding steel fibers into concrete can play two main roles: (a) improving the
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tensile strength and (b) preventing the occurrence and propagation of cracks. Figure 1 shows that compared with normal

concrete, the tensile strength and toughness of UHPC when steel fibers are added are significantly improved.

Figure 1. The effect of steel fibers in UHPC compared with normal concrete .

Steel fiber is one of the most commonly used fibers in UHPC. Those properties related to the tensile strength of a UHPC

depend largely on the content and geometric size of the steel fiber . The geometric differences among (in Figure 2)

and fiber content (vol.%) of steel fibers have been discussed in many studies . The motivation for this kind of

research is that steel fiber makes an important contribution to the tensile properties, and steel fiber is one of the most

expensive materials in UHPC . Therefore, discussing the influence of steel fiber on UHPC is beneficial for improving

the tensile strength of UHPC, reducing the cost of UHPC, and making it more suitable for engineering practice.

Figure 2. Common types of steel fibers. (a) Straight; (b) corrugated; (c) hooked-end; (d) twisted.

According to previous experience, steel fibers can be divided into micro steel fibers (𝑙 /𝑑  ≤ 13/0.2) and macro steel fibers

(𝑙 /𝑑  > 13/0.2). Based on their length, they can also be divided into short steel fibers (6 mm < 𝑙  < 13 mm), medium–long

steel fibers (13 mm ≤ 𝑙  ≤ 20 mm), long steel fibers (20 mm < 𝑙  < 30 mm), and ultra-long steel fibers (30 mm ≤ 𝑙 ). It is
generally believed that a reasonable hybrid of two or more kinds of steel fibers can be added to a UHPC, which can not

only play up the advantages of the different fibers, but also reflects their synergistic effect, which can significantly improve

some properties of the UHPC, and reduce costs. Figure 3 shows the synergy between macro and micro steel fibers.
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Figure 3. Schematic diagram of fiber bridging effect of fiber hybrid .

3. DIC Application to Tensile Properties of UHPC

3.1. The Basic Principle of DIC

As mentioned before, direct tensile tests are difficult to use to detect the expansion of main cracks using traditional

methods. Bending tensile tests often use notched specimens to predetermine the location of crack initiation, and are not

suitable for detecting multiple cracks. DIC is a nondestructive and non-contact optical, full-field deformation test 

. By spraying black and white spots on the surface of the UHPC specimen, a high-definition camera and Vic-

Snap software are used to collect the image data. The region to be analyzed is then selected using Vic-2D software .

The displacement and deformation are reflected by comparing the unchanged points (𝑥, 𝑦) of the image subset to (𝑥 , 𝑦 )

in the deformed state (in Figure 4). The horizontal 𝑈(𝑥,𝑦)  and vertical 𝑉(𝑥,𝑦) displacement fields are calculated by

Equations (1) and (2) . The Lagrangian strain field is derived from the displacement field, so as to determine the

local cracking zone of the UHPC. Because of the anisotropy of the materials and the geometric shape that affects the

shrinkage distribution, DIC can measure the non-uniform surface displacement, which cannot be detected by traditional

LVDT . Figure 5 is a schematic diagram of the inability of LVDT to capture the horizontal and vertical deformations at

the same time . Therefore, it is significant that DIC technology can be used to study the tensile post-crack curve of

UHPC.

 

Figure 4. The principle of DIC .
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Figure 5. LVDT cannot capture deformation under horizontal and vertical displacement simultaneously .

3.2. The Role of DIC in the Tensile Properties of UHPC

According to previous studies, the tensile properties of UHPC are closely related to the crack propagation process,

especially in the post-crack phase . Figure 6 depicts the different regions of crack growth behavior in UHPC. The

cracking of UHPC beams under a flexural load is divided into three regions: the uncracked zone, fracture process zone,

and macro-crack zone . Some researchers believe that there is a micro-fracture zone in the fracture process zone and

macro-crack zone, which are called the location zone . The crack widths in the fracture process zone and the

beginnings of the macro-crack zone are 0.022 mm and 0.05 mm, respectively . As can be seen from Table 1, DIC

is mainly used to characterize the crack propagation mechanism with respect to the tensile properties. Quantifying the

strain field and displacement field around the crack, the crack opening displacement of the UHPC, and the deflection of

the beam at the crack help to verify the measurement results of the LVDT. Arora et al.  presented the effect of the

UHPC composition on crack propagation through the combination of mechanical testing and DIC, to better understand the

relationship between the material design and performance characteristics of interest. Karim et al.  used DIC to obtain

first-hand information about the width and depth of the cracks observed in the flexural members, thus, evaluating the

influence of steel fibers on crack propagation. Niu et al.  used DIC to determine the strain of the first-cracking and the

rate of crack propagation. Some researchers have used DIC to analyze the crack shape and length under flexural tensile

strength. These show that DIC is widely used to analyze the time evolution of fracture opening displacement, fracture

length, and the local strain field . At the same time, DIC effectively avoids the complex problem of traditional strain

gauge arrangement and is conducive to studying the contribution of different steel fibers to crack growth.

Figure 6. Crack propagation behavior in different regions of UHPC .

Table 1. Application of DIC to steel fiber-reinforced UHPC.

Ref. Fiber
Combination

Fiber
Shape Application of DIC to UHPC

Single Straight (a) Characterize the main cracks and secondary cracks of the UHPC.
(b) Analysis of the strain field at different load values.
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Ref. Fiber
Combination

Fiber
Shape Application of DIC to UHPC

Single + Hybrid

Hooked
end (a) Analysis of the strain field representing different deflections.

(b) The maximum crack width of the UHPC reinforced with different steel fibers
shapes.
(c) Quantify the crack width within the depth range of the sample.

Twisted

Straight

Single + Hybrid Straight
(a) Characterize the crack shape and strain distribution under different load values.
(b) Quantify the crack width within the depth range of the sample.
(c) Quantification of the crack growth rate.

Single

Straight
(a) Comparison of the strain cloud maps and failure patterns for the different
specimens.Hooked

end

Single + Hybrid Straight (a) Characterize the crack shape and strain distribution under different load values.
(b) Quantify the crack width within the depth range of the sample.

Single Straight

(a) Characterization of horizontal displacement field of UHPC in different loading
stages.
(b) Changes in crack propagation in different loading stages.
(c) Displacement of crack opening in different loading stages.

Single Straight
(a) Comparison between DIC and traditional LVDT measurement methods.
(b) Quantify crack width over a range of specimen heights.
(c) Characterize the strain distribution under different load values.

Single Straight (a) Crack propagation in different loading stages.
(b) Crack width in the range of sample depth under different loads.
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