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Intraoperative neurophysiological monitoring (IONM) is being applied to a wide range of surgical fields as a

diagnostic tool to protect patients from neural injuries that may occur during surgery. However, several contributing

factors complicate the interpretation of IONM, and it is labor- and training-intensive. Meanwhile, machine learning

(ML)-based medical research has been growing rapidly, and many studies on the clinical application of ML

algorithms have been published.

intraoperative neurophysiological monitoring  artificial intelligence  machine learning

deep learning

1. Introduction

Intraoperative neurophysiological monitoring (IONM) is an essential diagnostic tool for the improvement of patient

safety via detection of neurological changes during surgery. IONM is currently being applied in various types of

surgery, such as open cranial surgery, spinal decompression, head and neck surgery, and peripheral nerve surgery

. The most prominent advantage of IONM is its use to confirm functional integrity in real time during surgery.

When a warning sign occurs, an immediate rescue intervention can be performed in the operating room,

minimizing neural injuries and enabling rapid postoperative treatment .

However, despite its advantages, some limitations exist in interpreting IONM. In particular, several factors

complicate the real-time interpretation of multimodal signals during IONM. In interpreting neurophysiological

changes related to surgical factors, a multidisciplinary approach between surgeons and physiatrists is essential,

and substantial information sharing between them is vital for accurate interpretation . Further, non-surgical

factors, such as anesthesia, the general condition of the patient, and mechanical defects, have to be considered

simultaneously with surgical factors . Another hurdle in interpreting IONM is that experts may interpret the same

results differently . Therefore, the performance and interpretation of IONM require a substantial level of training to

minimize inter-rater variability. Lastly, to respond sensitively to neural deterioration that occurs during surgery, the

expert must maintain high concentration even during long operations. Consequently, IONM is a complicated, labor-

intensive, and expensive process (Figure 1) .
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Figure 1.  Schematic illustration of intraoperative neurophysiological monitoring (IONM). A multidisciplinary

approach between the surgeon, physiatrist, and anesthesiologist is necessary throughout the process. Several

confounding factors, such as surgical, anesthesiologic, and mechanical factors, as well as the patient’s condition

and inter-rater variability complicate the interpretation of IONM.

The use of machine learning (ML) in medical research and clinical practice is rapidly expanding . In particular, ML

is increasingly being used for diagnosis and prognosis , as well as for disease classification, replacing

existing methods . Moreover, ML can execute proxy decision-making at the level of medical experts  and can

readily and efficiently handle a large number of samples and variables . Artificial intelligence (AI) models have

the additional benefit of continuously improving themselves by learning from additional data and by applying more

advanced techniques . Although their performance depends on data quality and learning algorithms, in general,

ML models have yielded promising results in clinical medicine .

2. Related Studies on the Application of ML Algorithms to
IONM

Jamaludin et al.  presented k-nearest neighbors (KNN)- and bagged trees-based ML models to predict positive

outcomes after lumbar surgeries in 55 patients. The positive outcome was defined as a motor improvement after

the surgery. They compared ML-based prediction methods with pre-existing criteria (50% of transcranial motor

evoked potential improvement). In their work, the ML-based method showed a relatively higher sensitivity (87.5%)

but lower specificity (33.3%), which was inferior to the pre-existing criteria for predicting postoperative motor

improvement. Consequently, they suggested that their proposed method had more room to advance with a large-

scale study.
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Agaronnik et al.  developed a deep learning-based automated detection system for neuromonitoring

documentation. They first identified operative reports containing neuromonitoring documentation by rule-based

natural language processing. Subsequently, they applied a deep learning-based natural language processing

model to identify events indicating a change in status, difficulty in establishing baseline signals, and a stable

course, from the reports of 993 patients who underwent spinal surgery. For detection of a change in status, they

achieved an area under the receiver operating characteristic curve (AUROC) of 1.0 and an F1 score of 0.80

(discussed further below). Their results suggest that deep learning-based natural language processing models can

identify medical documentation of IONM from a large volume of reports in a validated and timely manner.

Kortus et al.  predicted electromyography (EMG) signal characteristics during thyroid surgery in 34 patients.

They utilized a Bayesian convolutional neural network (CNN) approach to simultaneously classify action potentials

and assess signal characteristics. The extended model with two hidden layers with sigmoid activation yielded the

best predictive value, with an accuracy of 97.6%. By applying a Bayesian deep learning model, they estimated the

uncertainty of the model output, which improved the interpretability of the prediction. They demonstrated that the

deep learning model was suited for robust interpretation of electrophysiological signals.

Zha et al.  applied a deep learning model to free-running EMG for recurrent laryngeal nerve monitoring during

thyroid surgery. They classified the EMG according to morphology and presented a hybrid model that combined a

CNN approach with a long short-term memory (LSTM) network. Their proposed CNN-LSTM hybrid model yielded

an accuracy of 89.54% and a sensitivity of 94.23%. Their results demonstrated the possibility of reducing inter-rater

variability in the reading of free-running EMGs by using deep learning models, reducing the interpretive burden on

the expert.

Verdonck et al.  presented a model for the interpretation of outliers via train-of-four (TOF) measurements during

intraoperative acceleromyographic neuromuscular monitoring. They used a cost-sensitive logistic regression model

to analyze 533 TOF measurements from 35 patients. In terms of the predictive power of this model, the AUROC

was 0.91 (95% confidence interval: 0.72–0.97) and the F1 score was 0.86 (0.48–0.97). Their model proved

outstanding for binary classification. Their study is important since it showed that the model could analyze TOF

measurements to automatically identify outliers during intraoperative accelero-myographic neuromuscular

monitoring.

Qiao et al.  conducted visual evoked potential (VEP) monitoring in 76 patients who underwent surgical

decompression for sellar region tumors. They presented a model that could classify amplitude changes in VEPs

during surgery, by combining CNN and recurrent neural network (RNN) algorithms. The target class was divided

into three groups: increased VEP amplitude (>25% increase), decreased VEP amplitude (>25% decrease), and no

change in VEP amplitude. In this study, the overall accuracy of multiclass classification was 87.4% (84.2–90.1%).

The sensitivities for classification of no change in VEP, increasing VEP, and decreasing VEP were 92.6%, 78.9%,

and 83.7%, respectively, and their specificities were 80.5%, 93.3%, and 100.0%, respectively.
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Somatosensory evoked potential (SEP) is a modality that acts as the framework of intraoperative spinal surgery

monitoring . Fan et al.  utilized least squares and multi-support vector regression models on 15 patients

undergoing spinal surgery to intraoperatively interpret the SEP results. They defined the warning criteria as an

amplitude reduction of ≥50% or a latency delay of ≥10%. Target outcomes were classified as successful, false-

positive, or trauma cases. Their intelligent decision system lowered the false warning rate compared with their

conventional method and enabled more accurate detection of spinal cord trauma. The multi-support vector

regression model performed better than the least squared support vector regression model.

Table 1 summarizes studies on the application of ML algorithms to IONM.

Table 1. The application of machine learning in the field of intraoperative neurophysiological monitoring.
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Author
(Year) Samples IONM

Modality Models Target Outcome Summary of Results

Jamaludin
et al. 
(2022)

55 patients
who
underwent
lumbar
surgeries

MEP
KNN and
Bagged trees

Positive outcome
(motor
improvement)

The proposed method
was inferior to the
existing criteria.

Sensitivity: 87.5%

Specificity: 33.3%

Agaronnik
et al. 
(2022)

993 patients
who
underwent
spinal
surgery

MEP
and
SEP

Deep learning-
based natural
language
processing

Change in status

AUROC: 1.00

F1 score: 0.80

Difficulty
establishing
baseline

AUROC: 0.97

F1 score: 0.80

Stable course

AUROC: 0.91

F1 score: 0.93

Kortus et
al. 
(2021)

34 patients
who
underwent
thyroid
surgery

EMG Bayesian CNN
Classification of
action potentials

Accuracy: 97.6%

Precision: 97.7%

Recall: 97.6%
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IONM, intraoperative neurophysiological monitoring; MEP, motor evoked potential; KNN, k-nearest neighbors; SEP,

somatosensory evoked potential; AUROC, area under the receiver operating characteristic curve; EMG,

electromyography; CNN, convolutional neural network; LSTM, long short-term memory; TOF, train-of-four; AMG,
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 (2021)

5 patients
who
underwent
thyroid
surgery

Free-
running
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waveforms
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The hybrid model could
automatically classify the
free-running EMG.
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35 patients

AMG
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regression

Outlier TOF
measurement

AMG-based
intraoperative
measurements of TOF
outliers displayed an
increased monitoring
consistency.

F1 score: 0.86

AUROC: 0.91

Qiao et al.
 (2019)

76 cases with
sellar region
tumor

VEP
CNN and RNN
combination

Increasing,
decreasing, or no
change of VEP
amplitude

Overall accuracy of

CNN/RNN combined

vs. traditional method

using single VEP

images: 87.4% and

83.1%, respectively

Fan et al.
 (2016)

10 successful
surgeries
(158
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SEP
LS-SVR and
M-SVR
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no interruption
False positive case:
surgery interrupted
by an expert
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Trauma case:
surgery interrupted
by an expert, with
spinal cord injury
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NBM vs. LS-SVR vs. M-
SVR: 0.304, 0.080, and
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SVR: 0.500, 0.714, and
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4 false
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3. Limitations

Nonsurgical factors are important confounders in the interpretation of IONM. In particular, IONM modalities are very

sensitive to changes brought about by anesthesia-related factors . The anesthetic methodology used, the use of

neuromuscular blockade, the patient’s blood pressure and body temperature, and prolonged operation time,

among other factors, can substantially affect IONM signals, even in the absence of a neural insult . Cross-

disciplinary collaboration is essential in the construction of a model that can consider these various factors

simultaneously. In addition, since many variables need to be processed, it is essential that models are trained and

validated on high-quality datasets with large numbers of samples that share the same features.

Another point to consider is that false positives results in ambiguity in the interpretation of IONM signals . When

a warning signal occurs during surgery, regardless of its reliability (true or false positive), surgeons and

anesthesiologists respond by initiating a rescue intervention process . This may be an important confounding

factor in the predictive value of ML algorithms. If postoperative neurological deficit is defined as a dependent

variable during the construction of an ML model, there may be disagreements in the input to provide to an ML

algorithm when a warning signal is issued. Therefore, as demonstrated by Zha et al. , morphological

classification may be a more realistic alternative to the direct interpretation of evoked potential. In other words,

although the ML algorithm reads the signals, the human expert’s intervention remains essential in determining the

reliability and cause of a warning sign.

However, inter-rater variability in the interpretation of IONM signals is inevitable when human experts are involved

. For example, results will be interpreted differently depending on the definition of the baseline. The presence or

absence of a warning sign depends on whether the baseline is static or changes in response to previous

waveforms during the surgery . Studies also vary in their definitions of postoperative neurological deficits .

This difference in the interpretation of the ground truth can cause high variability between ML algorithms. The

interpretation of IONM results may also vary depending on the degree of training of the expert .
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