Recurrent Glioblastoma | Encyclopedia.pub

Recurrent Glioblastoma

Subjects: Oncology
Contributor: Pim French

Glioblastoma (GBM) is the most aggressive central nervous system (CNS) primary malignancy in adults, with a

median age at diagnosis of 65 years.

glioblastoma MGMT

| 1. Introduction

The annual incidence of glioblastoma is approximately 3 per 100,000 per person year. The disease is more
common in males and incidence increases with age 2. The standard of care in newly diagnosed GBM includes
maximal safe surgical resection, followed by radiotherapy and concurrent and adujvant temozolomide (TMZ) [,
Median overall survival (OS) varies between 12—18 months ¥&! and the 5-year survival in GBM is below 7% 18],
In adults, younger age and a good performance status (Karnofsky performance score KPS > 70 or WHO score 0)

at diagnosis are favorable prognostic factors 14!,

After first line medical management, the tumour virtually always recurs and when it does prognosis is very poor
(i.e., median PFS of 1.5-6 months and median OS of 2-9 months) &I Treatment options for recurrent GBM
(rGBM) patiens are limited and the management remains a challenge. Loco-regional therapy may be evaluated in
selected cases while traditional systemic therapy showed limited efficacy. In recent years, with greater knowledge
of the underlying molecular characteristics, a multitude of new drugs and new combination regimens have been
tested for efficacy in rGBM patients.

| 2. Molecular Characteristics of rtGBM
2.1. MGMT Promoter Methylation in rtGBM

It was first discovered over two decades ago that MGMT promoter methylation is associated with response to
alkylating chemotherapy in GBM patients 19, The predictive role of this biomarker was completed following
confirmation in a randomized controlled clinical trial, and further strengthened in two trials in elderly GBM patients
(LUI2I13] perhaps somewhat less well known is the observation that MGMT promoter methylation is also
prognostic: GBM patients with a methylated MGMT promoter have a longer survival, irrespective of treatment with
alkylating chemotherapy.
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Several studies have shown that MGMT promoter methylation is also prognostic at the time of recurrence in GBM
patients. In general, post-progression survival is around 3—4 months longer in patients harbouring MGMT-promoter
methylated v unmethylated tumors (10.9 v 7.2 months, 8.4 v 6.6 months, 12.5 v 7.9 months and 13.5 v 8.0 months
in studies reported by the German Glioma Network, EORTC 1542 (GSAM), the DIRECTOR trial and the EORTC
26101 trial, respectively) L4167 Nost of these studies defined MGMT promoter methylation using data from
the primary tumor. This is possible since MGMT promoter methylation is relatively stable. At least three
independent studies on paired primary-rGBM samples demonstrated that methylation status is maintained in
approximately 70-90% of tumor samples 1316181 Data therefore indicate that patients harbouring MGMT-
promoter methylated rGBMs have a slightly better post-progression survival.

Evidence for a predictive effect of MGMT promoter methylation in response to alkylating chemotherapy in patients
with relapsed or rGBM is quite scarce. One study reported improved outcomes in patients with MGMT-promoter
methylated v. unmethylated tumors treated with fotemustine, where the opposite was observed when tumors were
treated with bevacizumab 2. As bevacizumab has limited clinical efficacy in GBMs, this study suggests that
MGMT-promoter methylation is predictive of response to alkylating chemotherapy at tumor progression. However,
other studies did not observe such differences between treatment and control (LOMUSTINE) arms in methylated v
unmethylated tumors 292122 Establishing this potential predictive role, therefore, remains to be determined but is

important to guide treatment decisions at tumor recurrence.
2.2. The Genomic Landscape of rtGBMs

To understand what makes rGBMs unique, and thus expose potential treatment targets, one has to compare
differences between tumors at diagnosis and at recurrence. For this review, we will only focus on tumors that were
also diagnosed as GBMs (IDH-wildtype, if known) at initial diagnosis: lower grade gliomas (IDH-mutant) that evolve
into secondary GBMs represent an entirely different tumor entity with unique evolutionary trajectories. Firstly, and
perhaps slightly surprising, the number of mutations in known cancer genes does not appear to increase at tumor
recurrence, at least for the majority of tumors 18231241251 (though there is an increase in the overall mutational
burden 22)). In line with the stability of the number of mutations in driver genes is the observation that many of
them (on average ~80%) are retained in the recurrent tumor [28124123126]127] ' One study reported preferential gains
of mutations in LTBP4, MSH6, PRDM2 and IGF1R genes 24 though apart from the DNA mismatch repair gene
MSH®6, these have not been confirmed in other large cohort studies. No common larger chromosomal changes
have been documented at tumor progression 18 but some individual gains and losses may show within tumor
pairs [28. Despite this apparent similarity in genetic makeup, there is evidence for gain of selective events in the

majority (64%) of recurrent tumors and patients harbouring such tumors have worse outcomes 23,

Although this relatively large concordance in the genetic makeup between primary and rGBM is true for the
majority of tumors, there are some notable exceptions. Firstly, mutation retention is lower in the case of a distant
recurrence (28, though distant recurrences are quite rare. Second, despite a generally high mutation retention rate
in driver mutations, there are some marked differences between individual genes. For example, mutations in the

TERT promoter show the highest mutation retention rate (~90%), whereas mutations in the EGFR gene is at the
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other end of the spectrum with a retention rate of approximately 50% W16l23129] Of note, there can be ‘driver
switches’ where the same gene (such as EGFR) is affected in primary and recurrent gliomas, but the mutation
differs (281241 Hypermutated tumors are the third main exception to the relatively stable genotype ‘rule’. These are

detailed in a separate section of this review.

Cataloguing the retention rate is important for clinicians when designing molecular targeted therapy trials. This is
because trials at tumor recurrence are usually based on molecular data from the primary tumor (repeat surgeries
are not often performed) and potential loss of a mutation should therefore be taken into account. To give an
example, when an objective response rate of ~40% is considered positive, the number of patients to be included in
a trial is 41 (assuming a power of 80% and a one-sided alpha of 0.025). However, when the genetic change is lost

in 20% of samples, the number of patients to achieve similar power is almost doubled (n = 80) 18],

Similarities between primary and rGBM are also apparent at RNA level, where unsupervised analysis highlighted a
significant overlap between primary and rGBM B9, Expression-based molecular subtypes are also relatively stable
during tumor progression [BUE2 Some changes are however noticeable when looking at the expression of
individual genes, for example, in stemness-related genes [23l34] Methylation classes are also stable at progression
in ~85% of cases 3. This contrasts IDH-mutant low-grade gliomas which, at recurrence, often exhibit lower overall
DNA methylation levels, an increase in the frequency of poorer prognostic subclasses and worse outcomes for

patients at progression 31361,

Despite this similarity between primary and recurrent glioblastomas, there is evidence for considerable intratumoral
heterogeneity in both. For example, spatially separated samples taken from the same resection may differ with
respect to their genetic makeup [ZE7, Even if most studies on intratumoral heterogeneity have been performed on
primary tumor samples it is therefore likely such heterogeneity also exist in recurrent glioblastomas and may affect
treatment response 8. In summary, recurrent gliomas generally retain the genetic and epi-genetic makeup of the

primary tumor and, as such, are likely to require similar treatment regimens.

2.3. Hypermutated GBMs

A subset of temozolomide-treated GBMs gain inactivating mutations in DNA damage repair genes, such as MSH6,
MSH2 and MLH1, as first described in 2006 by the Sanger institute B2, Because of their impaired DNA repair
pathways, these tumors fail to correctly repair the damage inflicted by the alkylating agent and as a consequence,
acquire an exceptionally large number of mutations (often > 10 mutations per megabase) “9. Temozolomide-
induced hypermutated tumors are characterized by G:C > T:A transitions within a specific genetic context (COSMIC
mutational signature 11) 4142 Hypermutated tumors may also arise de novo, which occurs in the context of
germline mutations in DNA mismatch repair genes 49431441 Sych tumors have mutational signatures associated
with mismatch repair pathways 9. Although hypermutation is common in recurrent (IDH-mutant) low grade
gliomas, it is quite rare in rGBMs, with frequencies generally reported in the order of less than 10% (6/89 [24)),
14/186 18, 16/99 (23] and 0/29 [28)). Hypermutation appears to occur more often in MGMT-methylated GBMs (23%)
compared to MGMT-unmethylated tumors (5.6%) 29,
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Despite the large difference in the genetic makeup of hypermutated tumors, it is unclear whether patients with such
tumors have a different clinical course. One report suggested a longer survival 24, although other studies noted no
survival differences [181125145]146] or even a trend towards poorer survival in IDH-wt rGBMs 9. There is scarce
evidence on the efficacy of treatment of hypermutated GBMs. The effect of alkylating chemotherapy seems limited:
a retrospective analysis found highly similar survival between hypermutated and non-hypermutated tumors treated
with alkylating chemotherapy 22! and preclinical evidence suggested hypermutated tumors are resistant to
temozolomide 49, Because of their increased mutational burden, it has been speculated that hypermutated tumors
may be more susceptible to immune checkpoint inhibition. Initial anecdotal evidence supported this notion 441471
although a later retrospective analysis of gliomas with high mutational burden found no evidence for this, with no
increased immune infiltration 2%, However, evidence in larger trials is thus-far lacking and to date, there are no

specific treatment options for hypermutated GBMs 481,

| 3. Management of rGBM
3.1. Diagnosis of rtGBM

The diagnosis of rGBM relies on clinical status and MRI findings, according to Response Assessment in Neuro-
Oncology (RANO) criteria and medical history 22, MRI features of rGBM are heterogeneously described Y. GBM
may recur: (i) at the initial tumor site—most frequently <2 cm from lesion—in about 80% of cases B and/or, (ii)
distant, with unifocal/multifocal parenchymal lesions or leptomeningeal spread . Surprisingly, among different
localizations, cortical GBMs seem more prone to multifocal recurrence (2],

The distinction between disease recurrence and treatment-related complications is challenging and needs specific
attention. The main treatment-related complications are pseudoprogression (PsP) and radionecrosis . PsP, more
common in MGMT methylated GBM, is seen in up to 30% of patients treated with standard of care 2354l Usually,
PsP is characterized by tumor volume increase within 3 months post-chemoradiation therapy, but delayed cases
have been reported BI33l, This phenomenon is also seen after immunotherapies with a longer time frame leading
to the development of dedicated assessment tools: IRANO B4IB7E6IB8] Radiation necrosis is another complication
seen later in GBM patients treated with both radio and chemotherapy B3, |t usually appears between 3-12
months after radiotherapy 2. In both situations, RANO and iRANO criteria suggest: (i) careful selection of
reference imaging, (ii) close clinical and radiological follow-up and, (iii) avoidance of premature discontinuation of a
potentially efficient treatment in the absence of worsening symptoms [B4B8] Myltimodal imaging including
spectroscopy MR, dynamic susceptibility MR perfusion and nuclear imaging can help reach a final diagnosis 27
(391 The importance of multimodal imaging is even more apparent with blood-brain barrier permeability modifiers,
such as antiangiogenic drugs (2!,

Moreover, functional molecular imaging such as positron emission tomography (PET) using amino acid tracers
emerged as a promising investigational strategy in the setting of diagnosis, biopsy, resection and response
assessment 29, Histological proof remains the best approach to get molecular features of rGBM for potential

molecular targeted therapies. However, a limited number of rGBM patients are eligible for second biopsy or
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resection due to their frailty. Therefore, in this setting, multimodal approach including PET and MRI appear an

interesting alternative &I,

3.2. Prognostic Factors in rGBM

Older age at diagnosis and a decreased performance score (KPS or WHO) at recurrence have been associated
with a poor outcome in multiple cohorts of rGBM patients M. In the same line, localization of recurrence (i.e.,
contact with SVZ and/or ventricle) and ependymal spread on MRI have been linked to a poor outcome 22611621 |
contrast, cortical localization, volume of FLAIR hyperintensities on MRI do not significantly impact outcome [4161]
(631 yGBM localization in eloquent areas and tumor volume B9 time to first recurrence 4 and RTOG-RPA class &
were also proposed as prognostic indicators, but data are conflicting and warrant further investigations. As
described previously, the MGMT promoter methylation status can represent an important factor correlating with

survival in rGBM patients.

3.3. Treatment of rtGBM

Less than 50% of rGBM patients are eligible for second surgery (12—-48%) [63164l63] \When feasible, surgical
resection is associated with increased OS (i.e., 5-11 months) and preserved neurological status (i.e., >90% of
patients) 4IE3I64IES66I67] | these studies, an age of less than 65 years, a good performance status, radical
surgery, tumor location and chemotherapy treatment before recurrence were founded predictors of re-surgery
benefits; in the presence of these clinical and surgical parameters, second surgery at the time of GBM recurrence
could be considered as a therapeutic strategy in selected patients. However, the observed increased survival
should be taken with extreme caution due to a selection bias of prognostically favorable patients for second
surgery. The impact of surgery in rGBM was never assessed in a prospective manner, nor compared to medical

treatments.

Reirradiation (re-RT) can be a therapeutic option in rGBM. A secondary analysis of the Radiation Therapy
Oncology Group (RTOG) 0525 trial demonstrated a modest clinical benefit of re-RT compared to best supportive
care alone in rGBM patients (HR 0.74, 95% CI, 0.43-1.28). This survival benefit is amplified when re-RT is
combined with systemic therapies (HR 0.44, 95% CI, 0.30-0.63) 681, A systematic review and a metanalysis of 50
studies support the benefit of re-RT with a PFS6 of 43% (95% Cl, 35-50%, |12 = 82%) 83, However, the lack of
prospective trials, the heterogeneity of studies for patients and the radiotherapy regimen limit the drawing of robust
conclusions in rGBM [B270 Re-RT can only be proposed after careful consideration of the risk of radionecrosis 2!,
A phase lll trial has currently been withdrawn due to funding issues (NCT01830101). Stereotactic radiosurgery has
been shown to be associated with a better PFS6 (47%). It has the theoretical advantage of sparing normal tissue

but is restricted to small tumors with well-defined borders - a rare condition in rGBM 69,

With regard to systemic treatments in rGBM, multiple therapeutic options may be considered: (i) temozolomide
rechallenging [, (i) lomustine or bevacizumab or both X4, and (iii) tumor-treating fields 2, but most agents

proved to be limited or had no efficacy in randomized trial settings (median PFS of 2-3 months and PFS6 rate

https://encyclopedia.pub/entry/7117 5/13



Recurrent Glioblastoma | Encyclopedia.pub

below 15% By, Thus, due to a lack of validated standard of care, the National Comprehensive Cancer Network

(NCCN) recommends clinical trials as the preferred option for eligible patients B2IZ9,
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