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In this entry, several battery equalizer circuits are reviewed and simulated. In addition, a table is presented where
the main characteristics of the equalizers are summarized. These characteristics are used to assign a score to
each circuit with respect to how many characteristics are similar to the ideal equalizer. Finally, a methodology is

presented to compare these equalizers, taking into account the results obtained from the table.
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| 1. Introduction

Global warming is one of the biggest challenges today for humankind. The increase in temperature has caused the
disappearance of animal and plant species, defrosting of glaciers, sea level rise, extreme weather events and
many other phenomena that threaten life on our planet as we know it. The main cause of this change is the
emission of greenhouse gases into the atmosphere. These gases allow the light coming from the sun to pass

through them and reach Earth. However, they keep part of the radiation that is bounced back from the surface of
the Earth [LI2I314],

Some of the leading sources of these greenhouse gases are electricity generation, transportation, industry,
agriculture, and the commercial and residential sectors. The transportation sector is one of the most significant

contributors, representing 23.96% of total emissions of CO

worldwide Bl. Moreover, it is responsible for the higher growth in emissions today due to the growth of tourism, the

globalized economy and the increase in living standards €,

A viable alternative to reduce emissions in this sector is the use of EVs, which practically behave like zero-emission
cars. Despite the recent interest in these automobiles, their invention dates back to the nineteenth century. William
Morrison built the first successful electric car in the United States of America (USA) in 1891. By 1914, the sales of
these cars began an irreversible and inevitable decline due to competition with ICE automobiles. They never

disappeared completely, but were limited to light-duty vehicles 8],

Most reasons why these cars never had extensive use remain today. One of the main obstacles is the autonomy of

the car since it depends on the battery. In addition, the charging time makes it unattractive, they have a high selling
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price, and there is not a large number of charging stations. However, currently, they present a comparable

performance to ICE-based vehicles [£I10,

Despite the above mentioned limitations, benefits have been provided in the USA to encourage the purchase of
these cars due to their positive environmental impact. Some examples are credits for purchase, access to shared
travel lanes, exemption from inspections, and reduction of registration fees, among others 1112l These and other

factors have caused the growth of sales of these vehicles by seven times from 2010 to 2015 [13]141[15]

New challenges have emerged in the electronic industry for EVs application with the accelerated increase in sales
of these automobiles. In 181718l the main standout trends of the research applied to these cars are described as
follows: improving and decreasing the size of the battery chargers from the grid, creation of DC-DC converters for
the interface of the sources with a DC bus and the creation of new inverter topologies for the traction system. The

main issue related to the battery identified in these papers is the cell equalization.

Typically, an EV battery pack consists of a cluster of cells, where each Li-ion cell is not exactly equal to the others
in terms of capacity, internal resistance and self-discharge rate because of normal dispersion during
manufacturing. These characteristics cause a different charge/discharge time for each cell, which can lead to the
undercharge, overcharge or over-discharge on some cells if the battery pack is operated without protection 181191,
In these states, the cell loses capacity and can explode; consequently, avoiding them is desirable. The most viable
solution for this problem is not found by modifying the chemistry of the battery, but it is found in the electronic

industry. Hence, the battery pack is equipped with cell equalizers to avoid the states mentioned above 1920121],

A BEC is essentially a power electronic controller, which takes active measures to equalize the voltage or the state
of charge (SOC) in each cell (221231124 As g result, each of the cells has the same SOC during charging and
discharging, even in conditions of high dispersion in capacity and internal resistance. If all the cells have the same
SOC utilization, they degrade equally at the average degradation of the pack. If this condition is accomplished,
then all cells have the same capacity during the whole lifetime of the battery pack, avoiding premature end of life

due to the end of life of only one cell (221281271 A diagram of these devices is presented in Figure 1.
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Figure 1. General diagram of a cell equalizer.

There are several variables used to decide the homogeneity of the battery pack. The operating voltage of the cell is
widely used because it is pretty straightforward to understand and the tension is directly measured. However, this
variable does not reflect the internal state of the cell and it is affected by many internal parameters that yield in
fluctuations of the voltage and the activation of the equalization process 2812913081 '|f the operating voltage were
used, the equalization variable estimator is not used. When the equalization variable is the SOC or the capacity of
the cell, these variables are not measured directly and require a state estimator. Compared with the operating
voltage, these methods reflect the internal state of the battery more accurately and present a lower equalization
time. Moreover, it is not affected by the aging process and makes full use of the power of the battery pack.
Nevertheless, the main drawback of this variable is its complexity to be obtained accurately. Therefore, the design
time is increased and it requires a powerful hardware to be implemented [221331341(35] |t js well known that batteries
are indeed the main hurdle to driving EVs and, as stated above, the main issue for the electronics industry is the
cell equalization [1€l28] There are several papers in the literature that present a review of BEC and make a
qualitative analysis of these devices [271[38]139]140]

| 2. Discussion

Battery equalizers are a crucial component to ensure a safety operation in a battery bank. The balancing efficiency
is an essential parameter in equalizers since the less power it consumes, the more energy transferred into the cell.
In this aspect, passive methods present a poor performance when compared to active ones. Moreover, switched
capacitor—inductor network equalizers and capacitor-based equalizers suppress the switching losses; hence, these
equalizers offer good efficiency. The other active equalizers present switching and conduction losses; therefore,
they present a lower efficiency 411,
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Reference Bl discusses other factors that impact in the efficiency. The equalization variable used is crucial since
the operating voltage leads to an inefficient process. This behavior is explained because the variable does not
reflect the internal state of the cell. Thereupon, the equalization process will be over-activated. Moreover, the
equalization strategy can also lead to repeated equalization, e.g., rationalize the equalization variable to a
threshold, minimize the equalization time and maximize the battery capacity. A recommended strategy to avoid an
inefficient process is to minimize energy consumption. However, it is difficult to obtain the proper data and

increases the cost of the hardware needed [311142],

Battery equalizers are a crucial part of the storage system of EVs. They take active measures to keep all cells
within an allowed range of the equalization variable, even when they present a high dispersion in capacity and
internal resistance 1EI3AMI | this way, the batteries are protected, which is the most expensive element in EVs.
Further investigations in this area are needed to overcome the shortcomings of the reviewed topologies.
Advancements need to be made to improve one or more of the critical parameters highlighted as the component
count, power losses, equalization time, controller and implementation complexity, current and voltage stress in the
switches, size and cost. The advantages and limitations of the topologies present in the literature were highlighted
in this work. We think that this paper serves as a guideline for future research and investigations regarding the

issues and challenges of this topic.

Table 1 summarizes the results obtained in the simulations of this work. The complexity of the low-level controller
indicates the number of variables that are required to regulate. For example, in the Cuk converter, it is necessary to
control 3 variables, the current in both inductors and the voltage in the internal capacitor. The complexity in the
high-level controller indicates if it only decides the stop condition (1) or if it also decides the cells for power transfer
(2). Finally, for efficiency, a score of 0 was given to passive schemes, 1 to those that present switching and

conduction losses and 2 to equalizers that only present conduction losses.

Table 1. Comparative analysis of the reviewed equalizers for a four-cell battery bank.

Low-Level High-Level

. Component EqualizationMOSFET Sensors ... .
Equalizer Count Time[s] Stress Controllc_ar Controllt_ar Rrequire dEfflClencyTotaI
Complexity Complexity
Switched 4 resistors, 4.1V,
resistor 4 MOSFETs- 17.7-(2) 4.1 A- 0-(1) 1-(4) 4 (V)-(4) 0-(9) 28
& 2) (6)
4.1V,
Shunt 4 MOSFETs- 4(V). 4
MOSEET 18.18-(3) 4.05 A- 0-(1) 1(4) 0-(9) il
3] (1) (A)-(8)

(5)
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Component EqualizationMOSFET

Low-Level High-Level

Sensors

Equalizer . Controller Controller . EfficiencyTotal
Count Time [s] Stress CompIexityCompIexiterequIred
Switched 8 MOSFETS, 4.1V,
capacitor 3 capacitors- 8000-(8) 0.015 0-(1) 0-(2) 0-(2) 2-(1) 17
e (4) A-(1)
- 10 4.1V,
Single MOSFETs, o
capacitor ) 28,000-(9) 0.015 0-(1) 2-(8) 4 (V)-(4) 2-(1) 33
1 capacitor-
HelE A1)
9)
Df’“b'e' 8 MOSFETs, 8.2V, nents are
tered g apacitorss  3200-(7)  0.23A- 0-(1) 0-(1) 0-(1) 2-1) 27 d bulkiest
capacitor
p[ﬁ] ®) (10) The main
Jperation.
rate. This
i 6 MOSFETs, 4.1V, .
Switched ° 4(V), 3 ion of the
inductor 3 inductors- 16-(1) 4.4 A- 1-(7) 1-(4) 1-(5) 34 .
[49][50] 3) 7 A)-(7) 1e service
ep all the
10 switches,
Single 10 diodes 4.1V, 4) 1 ssipation.
inductor 23-(4) 4.4 A 1-(7) 2-(8) ' 1-6) 47 - For this
(51 1 inductor- (7) -6
since the
(10)
wer SOC.
1 damage
6 MOSFETSs, tion time.
o e 33, (5 jI;X’ 3-(10 1-(4 7). 6 1-(5 46 ualizers
[52](53] 3 capacitors- (4) »
he critical
8) .
ies based
acitor and
Switched 8 MOSFETs, 40,000-(10) 4.1V, 0-(2) 0-(2) 0-(1) 2-(1) 24
capacitor— 3 inductors 0.09 A-
inductor 3) Jining the
vee—i-., ._._ are more

e em e e — i ceime s mm— e —e— e = e —mee

guestions than answers in the reconfiguration of the battery online. Although Tesla, Microsoft and several top tier

universities accepted the software-defined batteries as a promising technology for EVs we consider that this

technology will not reach its full potential in the near future. Moreover, another research opportunity is to design the
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Low-Level High-Level

Component EqualizationMOSFET Sensors y a major

L Count Time [s] Stress googngﬁzgoonqm‘;ti;mequiredEﬁ'c'encyTOtals can be
network 3 capacitors- ualization
equalizer @) rr and the
= wved to be
1 that it is
4 MOSFETs
Buck: 4 diodes 4.1V,
boost 108-(6) 4.4 A 1(7) 2-(8) T4 e s
co&/&ger 4 inductors- @) (A)-(8)
(5)
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Metrics from Table 1 were used to compare the reviewed equlizaers with an idea equalizer. An ideal equalizer has
2. Papalexiou, S.M.; Montanari, A. Global and regional increase of precipitation extremes under.
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TheZB%,st equalizer using this methodology is the switched capacitor. However, this procedure is quite simple and

has many points that can be improved. For example, weighted coeficients can be used to highlight parameters of
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his %ﬁﬁh@ﬁtigﬁ_ergy 2019, 168, 989-1001.

6. Santos, G. Road transport and CO2 emissions: What are the challenges? Transp. Policy 2017,
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current to the lower SOC batteries. Commonly,two to six switches are used per cell to obtain a flexible battery pack
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Sometimes, it is desirable to design a circuit with the components to use before-hand. In BECs, that challenge has
not been widely studied 269,
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