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The microbial diversity in anaerobic digestion (AD) is important because it affects process robustness. High-throughput
sequencing offers high-resolution data regarding the microbial diversity and robustness of biological systems including
AD; however, to understand the dynamics of microbial processes, knowing the microbial diversity is not adequate alone.
Advanced meta-omic techniques have been established to determine the activity and interactions among organisms in
biological processes like AD. Results of these methods can be used to identify biomarkers for AD states. This can aid a
better understanding of system dynamics and be applied to producing comprehensive models for AD.
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| 1. Introduction

Microorganisms are abundant organisms in the environment that play essential roles in the sustainability of all life on the
Earth (. Anaerobic digestion (AD) is an engineered process for biological waste management through the conversion of
the organic feedstocks by microorganisms to produce biogas (i.e., a mixture of mainly methane and carbon dioxide) 2.
The AD process is a metabolic reaction consisting of four main steps in series (i.e., hydrolysis, fermentation or
acidogenesis, acetogenesis and methanogenesis), where several types of anaerobic bacteria and archaea interact
together to produce biogas (Figure 1) BIMIEIS! Moreover, the AD process is strictly dependent on the activity of the
microorganisms, and its efficiency is affected by critical interactions between the microorganisms (i.e., known as
syntrophic activities (which can be defined as close cooperation between at least two organisms based on the transfer of
metabolic products from one to another)) within the digester [,
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digestion. Polymeric organic materials go through the four stages of anaerobic digestion (hydrolysis, acidogenesis,
acetogenesis and methanogenesis), in order to produce raw biogas.

Although the online monitoring of conventional operation parameters (e.g., pH, temperature, volatile fatty acids, biogas
composition and alkalinity) reflect the current situation in terms of monitoring AD, these do not provide enough data to
understand the microbial community composition, dynamics and function, limiting the predictability of the process direction
[BI9] Additional information such as electron transfer mechanisms I the level of functional equivalence in the
microbial networks and the metabolic capacity of newly identified microorganisms are required to develop and optimize
AD 12131 Mmeta-omic techniques and gene amplicon sequencing methods can fill this gap in the understanding of AD and
have been developed in order to link the function and activity of the microbial community 41151,



| 2. Application of Microbial Diversity Analysis in AD Models

By mathematical modeling of AD, a biological process can be designed with the aim of the utilization of a specific type of
substrate. Modeling can also help to predict the performance of the biological process and biogas obtained, process
conditions and variations over time 8. Mathematical models of AD have been developed based on the scientific findings
regarding the well-known pathways, the interactions among microorganisms, the presence or absence of specific
organisms and the final products of each step. These models can be used to evaluate several parallel phenomena leading
to in depth insight into the AD process 18],

2.1. Metabolic Models of AD

Metabolic modeling is a tool to characterize and predict the function of the microbial community based on knowledge and
assumptions of cellular metabolisms that are gained from genome-scale assessments or observations at process level 11!
(18]191[20] - consequently, the metabolic modeling for AD is categorized as cellular-level modeling (CLM) or biochemical
process modeling (BPM).

The meta-omic approaches can be employed in CLM to demonstrate the cellular fluxes at a specific metabolic state by
using assumed or genome-level determination of metabolic limitations of cells in the given condition; however, the
pathway or transition to a new metabolic state is not mathematically clear. In this way, the potential impacts of genetic or
chemical limits on a metabolic branch can be investigated 2821, Through identification of new microbial groups and their
function in the AD of different substrates, several models for metabolic reactions have been continuously developed [22,
BPM is focused on the process function of various biological processes including AD. BPM considers the functional
groups (e.g., acidogens, acetogens and methanogens) 4. The well-known examples of BPM in wastewater and AD are
the activated sludge model (ASM) (23 and the anaerobic digestion model (ADM) [24],

In AD models, the main research gaps appear in the acidogenesis, acetogenesis and methanogenesis steps. These gaps
include regulation mechanisms in the fermentation of sugar; reduction and oxidation of amino acids (Stickland
fermentation); electron transfer modes; interspecies signaling and anabolic dependency; competition and acetogen/
methanogen type; and thermodynamic limitations of methanogenic archaea 22 A better understanding of the functional
clades can improve our understanding of the AD process and help bridge these research gaps.

2.2. Development of Metabolic Models and Main Gaps in the Field

The basic mathematical models of AD include different microbial functional groups that make a combination of different
metabolic pathways possible. These consist of fermentation, acetogenesis, and hydrogenotrophic and aceticlastic
methanogenesis 4. These fundamental models from the 1980s have been developed and have been employed for
different AD systems. Finally, in 2002, all the models amalgamated as the IWA AD model No. 1 (ADM 1) 24, ADM 1 is a
four-stage process model including different subgroups that represents the microbiological species utilizing different
products in each step of AD; however, the basic ADM 1 has been modified to meet new pathways (e.g., acetate oxidation
pathways) and other by product gases such as H,S 28, ADM 1 is established to describe different phenomenon such as
pH regulation and acid/base interrelation 24!, This BPM can also present the growth, inhibition and decay of the functional
groups including methanogenesis archaea and functional clades of bacteria mediation acidogenesis and acetogenesis 12
(27, Even though these BPMs have been validated for different AD, questions regarding community composition and
functions within the major clades have not been answered yet.

The BPM approaches generally consider a mixed microbial culture and introduce proton and electron regulations of
NADH for thermodynamic restrictions. Over 30 years ago, Mosey employed this method to regulate the propionate versus
acetate production via NADH [28, The process was controlled through different factors including pH and hydrogen
concentration 28 This method is further developed to predict the fermentation products due to introducing multiple
competing regulation mechanisms (e.g., electron bifurcation and acetogenesis). In addition to NADH, the electron carriers
in this system extended to FADH and Ferredoxin (Fd). NADH and FADH count as intracellular electron carriers, while Fd
is considered as the electron bifurcation element that is capable of direct hydrogen production 19129,

Unlike CLM approaches, BPM literature has extensively analyzed sulfate reduction processes where the sulfur-reducing
bacteria competes with methanogenesis to harvest electrons and generate hydrogen sulfide as the final electron sink
(instead of methane) B4, Even though some models have been developed in this field, the most challenging aspect of
including sulfur reduction is introducing physical chemistry and linking them to iron/phosphorous cycles [L4. Direct electron
transfer has been inferred in AD based on CLM analysis. In contrast, BPM-based approaches scarcely distinguish direct
versus mediated electron transfer [L7[31],



There is a considerable gap between CLM and BPM for mixed culture anaerobic metabolic modelling limiting their
application in full-scale AD plants. Even in acetogenesis and methanogenesis where both models are mature in terms of
approach and value obtained. The BPMs do not consider the genetic restrictions. This is particularly important when it
comes to physical interactions between syntrophic organisms or amino acid transfer. CLMs lack mass transfer and
process-related principles such as advection, diffusion and migration. Both BPMs and CLMs are limited by scale and
community complexity. This suggest that the best model to describe and predict AD can be a mixed CLM and BPM
approach, where the information from microbial community analysis forms rules for BPM and translate BPM principles
(e.g., suffusion and ion chemistry including migration) to be used in CLM 7,

2.3. Examples of Hybrid Cellular-Level Modeling/Biochemical Process Modeling (CLM/BPM) for
Enhanced Predictivity of AD Models

Ramirez et al. (2009) started to include the species diversity within a functional group in the ADM1 model. In this way, they
could estimate which organism can take over a biochemical reaction in different operational conditions leading a robust
AD process; however, more effort is required to include microbial diversity in ADM1 B2, In a recent study, intracellular
microbial activity data from meta-genomic and meta-transcriptomic analysis was linked with ADM1 in order to investigate
the model performance on predicting biogas production from lignocellulosic materials. In addition, the flux-balance
analysis of the methanogens actively was continuously updated in ADM1. As a result, this hybrid model could provide
detailed information regarding the activity pathways in anaerobic digestion compared to the original ADM1 and could
predict the intracellular activity of microbial species that are compatible with experimental data obtained from meta-
genomic and meta-transcriptomic analysis 231,

Determined and mapped proteins from meta-proteomic analysis of AD samples not only support the assumptions used in
the ADM1 but also revealed some indications of new pathways for biogas production including syntrophic acetate
oxidation pathway and other interspecies microbial interactions B4, Consequently, meta-proteomics can help to identify
the changes in functional level and can provide data on the metabolic activity of individual groups. Linking this information

with a BPM (e.g., ADM1) may enhance the accuracy of the model and indicate the active pathways for biogas production
[35][36]

| 3. Conclusions

AD involves diverse communities with high complexity in terms of functional interactions among the individuals or groups
of organisms. A joint method including meta-omics, virtualization techniques and chemical analyses may provide a
powerful tool for gaining highly valuable information from AD. Such a comprehensive method can provide a multi-
disciplinary tool allowing the identification of different species, recognition of their role in the process, distinguishing their
function and developing a stable AD process.

The 16S rRNA-based methods have the possibility of integration to an AD process in which the substrate residence time
is higher than 2 h (approximate time for real-time sequence amplicon production). This can be a strong tool to correlate
variations made by different factors in AD (e.g., feed type, inhibition and operational condition), to the community
composition in order to recognize the main contributors in biogas production. Metagenomics expresses the potential of
each functional group and can help us to understand the main differences between two similar community compositions.
In AD, the main application of metagenomics is to identify the major contributors in biogas production linked to the
operational condition; however, the integration of metagenomics in AD is not yet possible due to its slow process rate.

Meta-transcriptomics are suitable tools to determine low-abundance microbes and their contribution to system stability. It
can also reveal the multi-functional microbes in the process. Meta-transcriptomes are able to track fast changes in AD,
such as variations that happen due to rapid adaptation of the culture. This means that the results of meta-transcriptomics
linked to the operational conditions can help to establish an efficient anaerobic digester. At the cellular level, meta-
proteomics are powerful techniques to determine the variations in proteins and enzyme levels. Some of the enzymes that
can be identified with meta-proteomics can serve as biomarkers to predict future failures within the biological system. In
comparison with meta-proteomics, metabolomics can provide detailed snapshots from different pathways. Metabolomics
has a high potential to be integrated in AD as a predictive tool in order to enhance the biogas production and avoid
process failure; however, the lack of an AD biomarker database has limited the application of meta-metabolome in AD.
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