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As the infrastructure becomes well established, edge servers extend their service coverage to a wider scope. In
traffic control, edge computing servers can acquire and regulate real-time traffic. In in-vehicle tasks, edge
computing servers can provide high-quality services to users. Vehicular edge computing (VEC) is essential in

vehicle applications such as traffic control and in-vehicle services.

edge computing trajectory prediction

| 1. Introduction

In recent years, research related to edge computing has gradually received extensive attention from researchers [
2, Vehicular edge computing (VEC), as a part of edge computing, provides real-time service to vehicular users. It
has excellent prospects in the fields of intelligent transportation systems, smart city applications, and vehicular
applications.

As the infrastructure becomes well established, edge servers extend their service coverage to a wider scope. In
traffic control, edge computing servers can acquire and regulate real-time traffic. In in-vehicle tasks, edge
computing servers can provide high-quality services to users. However, the quality of service (QoS) in VEC still
cannot be significantly improved, and one of its bottlenecks is the inefficient task offloading. Traditional task
offloading methods are plagued by issues such as significant latency, high time and space complexity, and low

transmission quality.

To solve the problems of task offloading, trajectory prediction methods are used in the task offloading scheme. For
example, tasks which take up a lot of computational resources can be offloaded to other edge servers using
predictive-mode multi-hop transmission. Once the vehicle enters the transmission range of the edge server, it
obtains the computation results directly [El4],

2. Vehicular Edge Computing Schemes Related to Trajectory
Prediction

2.1. Vehicular Edge Computing
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Task offloading in VEC is the process of transmitting the computing task and related parameters from the service
requestor to the service providers through Vehicle-To-Vehicle (V2V) and Vehicle-To-Infrastructure (V2I)
communications . Saeik et al. ¥ summarized the communication issues in task offloading and proposed a novel
task offloading scheme that combines edge and cloud resources. An example of vehicular edge computing is

shown in Figure 1 below.
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Figure 1. An example of vehicular edge computing.

The resources of edge servers can be fully utilized to provide better QoS to users via optimizing the task offloading
scheme. Zhang et al. ¥ presented an efficient predictive combination-mode relegation scheme wherein the tasks
are adaptively offloaded to the edge servers through direct uploading or predictive relay transmissions. Zhan et al.
BBl converted global task offloading optimization problem into multiple local optimization problems with a heuristic
mobility-aware offloading algorithm (HMAOA) to approximate the optimal offloading scheme. Yang et al.
proposed a low-complexity semiparametric predictive model that takes into account the periodic characteristics and
spatial/temporal correlations of dynamic road events. Although these methods have shown some improvements,
they still fail to achieve an optimal balance between efficiency and accuracy in VEC. Therefore, how to predict

vehicle trajectories more accurately while ensuring efficiency is a pressing issue in task offloading at this stage.

2.2. Trajectory Prediction

Trajectory prediction problems can be categorized into two types based on different data types, namely continuous
trajectory prediction problems and discrete trajectory prediction problems. The continuous trajectory prediction
problem is a regression problem. Alahi et al. [l developed an LSTM model which can learn general human
movement and predict their future trajectories. Han et al. & proposed a short-term real-time trajectory coordinate
point prediction method based on a GRU (Gated Recurrent Unit) cyclic neural network. This method improves the

accuracy of real-time forecasting by updating the model parameters in real time. Huang et al. & discussed a new
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traffic network modeling algorithm based on the context of traffic intersections that maps vehicle trajectory nodes
into a high-dimensional space vector, so that Bi-GRU can be used to bidirectionally model the trajectory matrix for
the purpose of prediction. Amichi et al. 19 designed a two-step predictive framework solely based on personal
location data. This framework aims to address the prediction of visits to new places and adjust prediction resolution

to account for probable explorations of new locations.

Monreale et al. 11 proposed a T-pattern tree for trajectory prediction. The tree is constructed using trajectory
patterns that represent specific areas, and it can serve as a predictor for the next location of a new trajectory by
identifying the best-matching path within the tree. Dong et al. 12l put forward a new method named RTMatch to
predict the future location of a moving object using the storage structure, RTPT and HT, which can be updated
dynamically and provide dynamic analysis of trajectory pattern according to real-time information. Zeng et al. 13
presented a next-location prediction approach based on an RNN and self-attention mechanism to predict trajectory
patterns based on a sequence of discrete nodes. Feng et al. 14 proposed DeepMove, an attentional recurrent
network for mobility prediction from lengthy and sparse trajectories. DeepMove effectively utilizes the periodicity
nature to augment the RNN for mobility prediction. Liu et al. (13 created a geographically temporally awareness

hierarchical attention network (GT-HAN) to distinguish different user preferences.

Recent research proves that the Transformer outperforms other deep learning methods in trajectory prediction.
Amirloo et al. 18 proposed LatentFormer, a transformer-based model able to predict future vehicle trajectories by
leveraging a novel technique to model interactions among dynamic objects in the scene. Accounting for the
interaction between vehicles, Yan et al. 17 proposed two spatial attention mechanisms to help the model
understand the surrounding environment better and thus improve its prediction accuracy. Yu et al. [28 introduced
the Spatio-Temporal grAph tRansformer (STAR) framework, a novel framework for spatio-temporal trajectory
prediction based purely on a self-attention mechanism, with TGConv, a Transformer-based graph convolution
mechanism. Dai et al. 19 proposed a novel neural architecture, Transformer-XL, which enables learning
dependency beyond a fixed length without disrupting temporal coherence. Wang et al. 29 used a low-rank
approximation method to approximate a self-attention mechanism, which maintains high performance while
reducing the computational cost. Kitaev et al. 2 introduced reversible residual layers that reduce the memory
consumption of the model and give the model the ability to handle larger datasets. Kong et al. 22 proposed the
Spatial-Temporal Graph Attention Network (STGAT) for traffic flow forecasting. They demonstrated that STGAT can
be generalized directly not only to graphs with an arbitrary structure, but also to completely unseen graphs. None
of the existing deep-learning-based prediction methods consider the features in VEC. These deep learning
methods need a large amount of storage and computational resources. However, edge servers have limited

resources, which leads to the fact that these methods cannot be directly applied to VEC.

References

https://encyclopedia.pub/entry/50230 3/5



Vehicular Edge Computing Schemes Related to Trajectory Prediction | Encyclopedia.pub

10.

11.

12.

13.

. Liu, L.; Chen, C.; Pei, Q.; Maharjan, S.; Zhang, Y. Vehicular edge computing and networking: A

survey. Mob. Netw. Appl. 2021, 26, 1145-1168.

. Luo, Q.; Hu, S;; Li, C.; Li, G.; Shi, W. Resource scheduling in edge computing: A survey. IEEE

Commun. Surv. Tutor. 2021, 23, 2131-2165.

. Zhan, W.; Luo, C.; Min, G.; Wang, C.; Zhu, Q.; Duan, H. Mobility-aware multi-user offloading

optimization for mobile edge computing. IEEE Trans. Veh. Technol. 2020, 69, 3341-3356.

. Zhang, K.; Mao, Y.; Leng, S.; He, Y.; Zhang, Y. Mobile-edge computing for vehicular networks: A

promising network paradigm with predictive off-loading. IEEE Veh. Technol. Mag. 2017, 12, 36—
44,

. Saeik, F.; Avgeris, M.; Spatharakis, D.; Santi, N.; Dechouniotis, D.; Violos, J.; Leivadeas, A.;

Athanasopoulos, N.; Mitton, N.; Papavassiliou, S. Task offloading in Edge and Cloud Computing:
A survey on mathematical. Comput. Netw. 2021, 195, 108177.

. Yang, S.R.; Su, Y.J.; Chang, Y.Y.; Hung, H.N. Short-term traffic prediction for edge computing-

enhanced autonomous and connected cars. IEEE Trans. Veh. Technol. 2019, 68, 3140-3153.

. Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei, L.; Savarese, S. Social Istm: Human

trajectory prediction in crowded spaces. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 961-971.

. Han, P.; Wang, W.; Shi, Q.; Yang, J. Real-time short-term trajectory prediction based on GRU

neural network. In Proceedings of the 38th Digital Avionics Systems Conference (DASC), San
Diego, CA, USA, 8-12 September 2019; pp. 1-8.

. Huang, M.; Zhu, M.; Xiao, Y.; Liu, Y. Bayonet-corpus: A trajectory prediction method based on

bayonet context and bidirectional GRU. Digit. Commun. Netw. 2021, 7, 72-81.

Amichi, L.; Viana, A.C.; Crovella, M.; Loureiro, A.A. From movement purpose to perceptive spatial
mobility prediction. In Proceedings of the 29th International Conference on Advances in
Geographic Information Systems, Beijing, China, 2-5 November 2021; pp. 500-511.

Monreale, A.; Pinelli, F.; Trasarti, R.; Giannotti, F. Wherenext: A location predictor on trajectory
pattern mining. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, 28 June—1 July 2009; pp. 637—646.

Zhenjiang, D.; Jia, D.; Xiaohui, J.; Yongli, W. RTMatch: Real-time location prediction based on
trajectory pattern matching. In Database Systems for Advanced Applications, Proceedings of the
DASFAA 2017 International Workshops: BDMS, BDQM, SeCoP, and DMMOOC, Suzhou, China,
27-30 March 2017; Springer: Cham, Switzerland, 2017; pp. 103-117.

Zeng, J.; He, X.; Tang, H.; Wen, J. A next location predicting approach based on a recurrent
neural network and self-attention. In Collaborative Computing: Networking, Applications and

https://encyclopedia.pub/entry/50230 4/5



Vehicular Edge Computing Schemes Related to Trajectory Prediction | Encyclopedia.pub

14.

15.

16.

17.

18.

19.

20.

21.

22.

Worksharing, Proceedings of the 15th EAI International Conference, London, UK, 19-22 August
2019; Springer: Cham, Switzerland, 2019; pp. 309-322.

Feng, J.; Li, Y.; Zhang, C.; Sun, F.; Meng, F.; Guo, A.; Jin, D. Deepmove: Predicting human
mobility with attentional recurrent networks. In Proceedings of the 2018 World Wide Web
Conference, Lyon, France, 23-27 April 2018; pp. 1459-1468.

Liu, T.; Liao, J.; Wu, Z.; Wang, Y.; Wang, J. A geographical-temporal awareness hierarchical
attention network for next point-of-interest recommendation. In Proceedings of the 2019 on
International Conference on Multimedia Retrieval, Ottawa, ON, Canada, 10-13 June 2019; pp. 7—
15.

Amirloo, E.; Rasouli, A.; Lakner, P.; Rohani, M.; Luo, J. Latentformer: Multi-agent transformer-
based interaction modeling and trajectory prediction. arXiv 2022, arXiv:2203.01880.

Yan, J.; Peng, Z.; Yin, H.; Wang, J.; Wang, X.; Shen, Y.; Stechele, W.; Cremers, D. Trajectory
prediction for intelligent vehicles using spatial-attention mechanism. IET Intell. Transp. Syst. 2020,
14, 1855-1863.

Yu, C.; Ma, X.; Ren, J.; Zhao, H.; Yi, S. Spatio-temporal graph transformer networks for
pedestrian trajectory prediction. In Proceedings of the Computer Vision—-ECCV 2020: 16th
European Conference, Glasgow, UK, 23-28 August 2020; pp. 507-523.

Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.V.; Salakhutdinov, R. Transformer-xI: Attentive
language models beyond a fixed-length context. In Proceedings of the 57th Annual Meeting of the
Association-for-Computational-Linguistics (ACL), Florence, Italy, 28 July—2 August 2019; pp.
2978-2988.

Wang, S.; Li, B.Z.; Khabsa, M.; Fang, H.; Ma, H. Linformer: Self-attention with linear complexity.
arXiv 2020, arXiv:2006.04768.

Kitaev, N.; Kaiser, t.; Levskaya, A. Reformer: The efficient transformer. arXiv 2020,
arXiv:2001.04451.

Kong, X.; Xing, W.; Weli, X.; Bao, P.; Zhang, J.; Lu, W. STGAT: Spatial-temporal graph attention
networks for traffic flow forecasting. IEEE Access 2020, 8, 134363-134372.

Retrieved from https://encyclopedia.pub/entry/history/show/113898

https://encyclopedia.pub/entry/50230 5/5



