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As the infrastructure becomes well established, edge servers extend their service coverage to a wider scope. In

traffic control, edge computing servers can acquire and regulate real-time traffic. In in-vehicle tasks, edge

computing servers can provide high-quality services to users. Vehicular edge computing (VEC) is essential in

vehicle applications such as traffic control and in-vehicle services. 

edge computing  trajectory prediction

1. Introduction

In recent years, research related to edge computing has gradually received extensive attention from researchers 

. Vehicular edge computing (VEC), as a part of edge computing, provides real-time service to vehicular users. It

has excellent prospects in the fields of intelligent transportation systems, smart city applications, and vehicular

applications.

As the infrastructure becomes well established, edge servers extend their service coverage to a wider scope. In

traffic control, edge computing servers can acquire and regulate real-time traffic. In in-vehicle tasks, edge

computing servers can provide high-quality services to users. However, the quality of service (QoS) in VEC still

cannot be significantly improved, and one of its bottlenecks is the inefficient task offloading. Traditional task

offloading methods are plagued by issues such as significant latency, high time and space complexity, and low

transmission quality.

To solve the problems of task offloading, trajectory prediction methods are used in the task offloading scheme. For

example, tasks which take up a lot of computational resources can be offloaded to other edge servers using

predictive-mode multi-hop transmission. Once the vehicle enters the transmission range of the edge server, it

obtains the computation results directly .

2. Vehicular Edge Computing Schemes Related to Trajectory
Prediction

2.1. Vehicular Edge Computing
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Task offloading in VEC is the process of transmitting the computing task and related parameters from the service

requestor to the service providers through Vehicle-To-Vehicle (V2V) and Vehicle-To-Infrastructure (V2I)

communications . Saeik et al.  summarized the communication issues in task offloading and proposed a novel

task offloading scheme that combines edge and cloud resources. An example of vehicular edge computing is

shown in Figure 1 below.

Figure 1. An example of vehicular edge computing.

The resources of edge servers can be fully utilized to provide better QoS to users via optimizing the task offloading

scheme. Zhang et al.  presented an efficient predictive combination-mode relegation scheme wherein the tasks

are adaptively offloaded to the edge servers through direct uploading or predictive relay transmissions. Zhan et al.

 converted global task offloading optimization problem into multiple local optimization problems with a heuristic

mobility-aware offloading algorithm (HMAOA) to approximate the optimal offloading scheme. Yang et al. 

proposed a low-complexity semiparametric predictive model that takes into account the periodic characteristics and

spatial/temporal correlations of dynamic road events. Although these methods have shown some improvements,

they still fail to achieve an optimal balance between efficiency and accuracy in VEC. Therefore, how to predict

vehicle trajectories more accurately while ensuring efficiency is a pressing issue in task offloading at this stage.

2.2. Trajectory Prediction

Trajectory prediction problems can be categorized into two types based on different data types, namely continuous

trajectory prediction problems and discrete trajectory prediction problems. The continuous trajectory prediction

problem is a regression problem. Alahi et al.  developed an LSTM model which can learn general human

movement and predict their future trajectories. Han et al.  proposed a short-term real-time trajectory coordinate

point prediction method based on a GRU (Gated Recurrent Unit) cyclic neural network. This method improves the

accuracy of real-time forecasting by updating the model parameters in real time. Huang et al.  discussed a new
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traffic network modeling algorithm based on the context of traffic intersections that maps vehicle trajectory nodes

into a high-dimensional space vector, so that Bi-GRU can be used to bidirectionally model the trajectory matrix for

the purpose of prediction. Amichi et al.  designed a two-step predictive framework solely based on personal

location data. This framework aims to address the prediction of visits to new places and adjust prediction resolution

to account for probable explorations of new locations.

Monreale et al.  proposed a T-pattern tree for trajectory prediction. The tree is constructed using trajectory

patterns that represent specific areas, and it can serve as a predictor for the next location of a new trajectory by

identifying the best-matching path within the tree. Dong et al.  put forward a new method named RTMatch to

predict the future location of a moving object using the storage structure, RTPT and HT, which can be updated

dynamically and provide dynamic analysis of trajectory pattern according to real-time information. Zeng et al. 

presented a next-location prediction approach based on an RNN and self-attention mechanism to predict trajectory

patterns based on a sequence of discrete nodes. Feng et al.  proposed DeepMove, an attentional recurrent

network for mobility prediction from lengthy and sparse trajectories. DeepMove effectively utilizes the periodicity

nature to augment the RNN for mobility prediction. Liu et al.  created a geographically temporally awareness

hierarchical attention network (GT-HAN) to distinguish different user preferences.

Recent research proves that the Transformer outperforms other deep learning methods in trajectory prediction.

Amirloo et al.  proposed LatentFormer, a transformer-based model able to predict future vehicle trajectories by

leveraging a novel technique to model interactions among dynamic objects in the scene. Accounting for the

interaction between vehicles, Yan et al.  proposed two spatial attention mechanisms to help the model

understand the surrounding environment better and thus improve its prediction accuracy. Yu et al.  introduced

the Spatio-Temporal grAph tRansformer (STAR) framework, a novel framework for spatio-temporal trajectory

prediction based purely on a self-attention mechanism, with TGConv, a Transformer-based graph convolution

mechanism. Dai et al.  proposed a novel neural architecture, Transformer-XL, which enables learning

dependency beyond a fixed length without disrupting temporal coherence. Wang et al.  used a low-rank

approximation method to approximate a self-attention mechanism, which maintains high performance while

reducing the computational cost. Kitaev et al.  introduced reversible residual layers that reduce the memory

consumption of the model and give the model the ability to handle larger datasets. Kong et al.  proposed the

Spatial-Temporal Graph Attention Network (STGAT) for traffic flow forecasting. They demonstrated that STGAT can

be generalized directly not only to graphs with an arbitrary structure, but also to completely unseen graphs. None

of the existing deep-learning-based prediction methods consider the features in VEC. These deep learning

methods need a large amount of storage and computational resources. However, edge servers have limited

resources, which leads to the fact that these methods cannot be directly applied to VEC.
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