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Object detection is a complex problem due to underlying high intra-class and low inter-class variance. High intra-

class variance is the consequence of different objects belonging to a single class, for instance, different poses of

humans or humans wearing different clothes in an image. Low inter-class variance is the outcome of similar-

looking objects belonging to different classes such as samples of class chair can easily be misclassified into the

class bench and vice versa.
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1. Introduction

Object detection is considered as one of the most important and elementary tasks in the field of computer vision.

The problem of object detection deals with the identification and spatial localization of objects present in an image

or a video . The task of object detection covers a wide range of many other computer vision tasks, such as

instance segmentation , visual question answering , image captioning , object tracking , activity

recognition  and so on.

One of the earlier approaches for object detection algorithms relied on sliding windows, applying classification on

each window to find objects . Later, the sliding window concept was replaced with region proposals to

narrow the search before applying classification . The recent surge in deep learning has given rise to

object detection systems along with other fields.

The prior published work in object detection can be further classified into three categories which are explained

below. Figure 1 depicts the basic difference between them: 1. Object Detection (OD) : OD aims at detecting

objects regardless of their class category . OD algorithms  generally propose a large number of

possible region proposals, from which, later on, the best possible candidates are selected according to certain

criteria. 2. Salient Object Detection (SOD) : SOD algorithms use the human attention mechanism concept to

highlight and detect the objects in a picture or video . 3. Category-specific Object Detection (COD) : COD

aims at detecting multiple objects. Unlike OD and SOD, COD has to predict the category class and the location of

the object in the image or video .
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The deep learning-based object detection algorithms are categorized into two-stage object detectors and one-

stage object detectors. Two-stage object detection architectures such as R-CNN , Fast R-CNN  and Faster R-

CNN  segregate the task of object localization from the object classification task. They employ region proposal

techniques to find possible regions where the likelihood of an object’s existence is maximum. Later segmentation

output and better detection pooling  techniques were introduced with Mask R-CNN . On the other hand, one-

stage object detection algorithms first generate candidate regions, and then these regions are classified as

object/no-object. For instance, one-stage detectors such as YOLO  and SSD  work with feature

pyramid networks (FPNs)  as a backbone to detect objects at multiple scales in a single pass rather than first

predicting regions and then classifying them.

2. Related Surveys on Object Detection

There are many surveys carried out on the topic of object detection . This section covers some of the

prior surveys.

Han et al.  organized the survey in which deep learning techniques for salient and category-specific object

detection are reviewed. In 2019, Zou et al.  performed an extensive survey on object detection methods that

have been proposed in the last 20 years. The authors discussed all the types of object detection algorithms

proposed over the years and highlighted their improvements.

Another survey organized by Jiao et al.  discussed various deep learning-based methods for object detection.

The proposed work provided a comprehensive overview of traditional and modern applications of object detection.

Moreover, the authors discussed methods for building better and efficient object detection methods by exploiting

existing architectures. Arnold et al.  surveyed 3D object detection methods for autonomous driving. The

proposed work compared various 3D object detection-based approaches.

It is vital to mention that all of the prior surveys have focused on the general problem of object detection. Although

these surveys explain how object detection has improved over the years, they do not cover the challenges and

solutions to improve object detection performance in a challenging environment such as low light, occlusions,

hidden objects, and so on. To the best of our knowledge, we provide the first survey that reviews the performance

of deep learning-based approaches in the field of object detection in a challenging environment.

3. Experiments

We have investigated the performance of current state-of-the-art object detection algorithms on the three most

challenging datasets. The idea is to conduct an analysis that explains how well object detection algorithms can

perform under harsh conditions. We employed Faster R-CNN , Mask R-CNN , YOLO V3 , Retina-Net ,

and Cascade Mask R-CNN  to benchmark their performance on the datasets of ExDARK , CURE-TSD ,

and RESIDE .
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We have leveraged the capabilities of transfer learning in our experiments. All the object detection networks are

incorporated with a backbone of ResNet50  pre-trained on the COCO dataset . We fine-tuned all the models

for 15 epochs with a learning rate of 2× 10− 5 and used Adam  as an optimizer. We resized images to 800 × 800

during the training and testing phases.

4. Evaluation

This section discusses the well-known evaluation criteria essential to standardize state-of-the-art results for object

detection in difficult situations. Moreover, this section analyzes the performance of the approaches discussed in

Section 3 with quantitative and qualitative illustrations. Finally, we will present the outcome of our experiments on

the three most widely exploited challenging datasets.

The standardization of how to assess the performance of approaches on unified datasets is imperative. Since

object detection in a challenging environment is identical to generic object detection, the approaches appraise

similar evaluation metrics.

Precision  defines as the percentage of a predicted region that belongs to the ground truth. Figure 1 illustrates

an the difference between precise object detection and imprecise object detection. The formula for precision is

explained below: (1) Predicted area in ground truth Total area of predicted region = TP TP + FP where TP denotes

true positives and FP represents false positives.

Figure 1. The image explains the visual difference between precise and imprecise prediction in object detection.

The green color represents the ground truth, and the red color depicts the predicted boundary. Considering the IOU

threshold value equals 0.5, the left prediction is not precise because the IOU between the ground truth and the

inferred bounding box is less than 0.5. The bounding box prediction on the right side is precise because it covers

almost the complete ground truth area.
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The main reason for the low performance of these state-of-the-art generic object detection algorithms is that they

are not trained on challenging datasets that include low-light images or occluded images. Furthermore, the

backbone network of these architectures cannot optimally extract the spatial features necessary for detecting

objects in challenging environments. Hence, it is empirically established that generic object detection algorithms

are not ideal for resolving object detection in challenging images.
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