

RAGE as a Novel Biomarker for Prostate Cancer

Subjects: **Biology**

Contributor: Catherine C. Applegate , Michael B. Nelappana , Elaine A. Nielsen , Leszek Kalinowski , Iwona T. Dobrucki , Lawrence W. Dobrucki

Prostate cancer (PCa) is a commonly diagnosed cancer among men worldwide. The receptor for advanced glycation end-products (RAGE) has been implicated in driving PCa growth, aggression, and metastasis through the fueling of chronic inflammation in the tumor microenvironment. RAGE expression is strongly tied to PCa progression and can serve as an effective diagnostic target to differentiate between healthy prostate, low-grade PCa, and high-grade PCa, with potential theragnostic applications.

receptor for advanced glycation end-products

RAGE

prostate cancer

biomarker

1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed cancer and the second leading cause of cancer-related deaths among men in the United States [1]. The current screening and diagnostic pathway for PCa consists of testing the serum levels of prostate-specific antigen (PSA) and performing a transrectal ultrasound-guided biopsy to histologically confirm PCa and rule out benign prostatic hyperplasia (BPH). This current standard of care has been shown to carry significant disadvantages: potential for sepsis and post-operative complications; omission of parts of the prostate due to patient pain; significant false-negative risk; and overdiagnosis due to the inability to differentiate between clinically significant and insignificant cancer cells effectively [2]. Perhaps as a result of new, more limited screening recommendations and more intensive initial treatments, diagnoses of localized disease are trending downward while the incidence of metastatic PCa is increasing [3]. To address these issues, new biomarkers, such as prostate-specific membrane antigen (PSMA), are being sought out as alternatives to PSA screening, which may provide additional information that will enable clinicians to differentiate between benign tissue, low-grade PCa, and high-grade PCa [4][5][6].

Chronic inflammation associated with increased body adiposity is a critical part of the initiation and development of PCa and other solid cancers [7]. The Western diet has been demonstrated to play a prominent role in the development of obesity and obesity-associated carcinogenesis [8]. In fact, the Western diet has been shown to exacerbate PCa tumorigenesis [9][10] and has been associated with increased mortality following PCa diagnosis [11]. Comprised largely of animal protein and high-carbohydrate and high-fat processed foods, the Western diet is also rich in dietary advanced glycation end-products (AGEs) [12]. AGEs are stable end-products formed endogenously and exogenously through the nonenzymatic glycation of proteins, lipids, and nucleic acids, which can form toxic

crosslinks with other molecules and bind to specific inflammatory receptors [13]. High levels of dietary AGEs are associated with the development of inflammation-related chronic pathologies, including cancer [14][15].

The receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin protein family of cell surface proteins found in a wide range of tissue types [16]. RAGE activation by AGEs stimulates the PI3K-mediated activation of NF-κB, which leads to a positive feed-forward cascade of pro-inflammatory responses, including an increased expression of RAGE [17][18][19][20][21][22]. The activation of RAGE can also be induced by a wide range of ligands, such as the S100 protein family and high mobility group box 1 protein (HMGB1), a damage-associated molecular pattern (DAMP) molecule released by damaged cells [20]. The activation of RAGE by proteins such as HMGB1, which is released by cells that die during PCa treatment as a result of therapy such as radiation, suggests that RAGE may play a role in PCa treatment resistance. In fact, inflammation in the PCa tissue microenvironment has been linked to proliferation, apoptosis inhibition, treatment and immune resistance, angiogenesis, and epithelial–mesenchymal transition (EMT) [23].

2. RAGE as a Novel Biomarker for Prostate Cancer

RAGE, the physiologic receptor for AGEs, has attracted significant attention since its discovery [24] due to its diverse ligand repertoire and involvement in several pathophysiological processes linked to inflammation, including cancer [25][26]. It was demonstrated that RAGE expression is directly tied to the malignant potential of PCa through different signaling mechanisms [27][28], including the activation of critical processes that promote drug resistance, stimulate angiogenesis, and enhance invasiveness [29][30][31]. Moreover, recent studies provided a positive association between RAGE, its ligands, such as AGEs and DAMPs, and neuroendocrine differentiation of PCa, which correlates with tumor grade, loss of androgen sensitivity, auto/paracrine activity, and poorer prognosis [32].

Results demonstrate that RAGE expression is elevated in PCa, with an overall OR of 11.3 when compared to benign prostate tissue. Importantly, many studies have evaluated PCa in comparison to prostate tissues with BPH rather than normal prostate tissue. This may be highly significant, as BPH has been shown to be a strong predictor for developing PCa [33]. No current biomarkers exist to differentiate BPH from PCa [34], but increased RAGE expression in high- vs. low-grade PCa suggest there may be an association with RAGE in BPH as well as PCa. Results show that high-grade PCa was found to be much more likely to express RAGE compared to low-grade cancers, suggesting that RAGE could be used as a biomarker to differentiate among different gradations of PCa.

Importantly, RAGE expression may be used for assessment when indolent cancers undergo a phenotypic switch to more aggressive, high-grade cancers. Cell culture studies consistently demonstrated that the expression and activation of RAGE is directly linked to PCa cell proliferative and migratory abilities, shown to occur mainly through the stimulation of the PI3K/Akt pathway and ultimately leading to the activation of oncoprotein NF-κB. HMGB1 expression in PCa was also investigated in several of the included studies, and HMGB1-specific activation of the RAGE axis was found to play a prominent role in the measured outcomes of PCa [21][28][35][36]. Because only two studies [28][36] compared the co-expression of RAGE and HMGB1, a meta-analysis was not conducted. As a DAMP, HMGB1 release by necrotic cells plays a role in priming immune cells to recognize dead or damaged tumor cells;

however, this acute inflammatory effect by HMGB1 also results in sustained inflammation in the PCa microenvironment by RAGE ligand activity, ultimately promoting treatment resistance and tumor growth through RAGE activation [37][38].

Due to the high association identified between RAGE and PCa, RAGE expression could be used as a prognostic tool to monitor BPH and localized PCa. However, the risks and side effects associated with repeated biopsies to longitudinally monitor RAGE expression are numerous [2], and, as such, are not clinically feasible. To this end, a research group has developed a multimodal imaging platform to non-invasively quantify RAGE expression in tissues, with the probe having demonstrated consistent utility in imaging RAGE in PCa [39][40]. This platform has the potential to transform current diagnostic and therapeutic paradigms of PCa treatment by enabling clinicians to use medical imaging tools to non-invasively and longitudinally monitor BPH or localized PCa. Increases in RAGE expression over time would indicate PCa progression, providing a necessary criterion that will help determine clinical therapeutic response.

References

1. Siegel, D.A.; O'Neil, M.E.; Richards, T.B.; Dowling, N.F.; Weir, H.K. Prostate Cancer Incidence and Survival, by Stage and Race/Ethnicity—United States, 2001–2017. *Morb. Mortal. Wkly. Rep.* 2020, 69, 1473–1480.
2. Lomas, D.J.; Ahmed, H.U. All change in the prostate cancer diagnostic pathway. *Nat. Rev. Clin. Oncol.* 2020, 17, 372–381.
3. Desai, K.; McManus, J.M.; Sharifi, N. Hormonal Therapy for Prostate Cancer. *Endocr. Rev.* 2021, 42, 354–373.
4. Duffy, M.J. Biomarkers for prostate cancer: Prostate-specific antigen and beyond. *Clin. Chem. Lab. Med.* 2020, 58, 326–339.
5. Saini, S. PSA and beyond: Alternative prostate cancer biomarkers. *Cell. Oncol.* 2016, 39, 97–106.
6. Talesa, V.N.; Antognelli, C.; Del Buono, C.; Stracci, F.; Serva, M.R.; Cottini, E.; Mearini, E. Diagnostic potential in prostate cancer of a panel of urinary molecular tumor markers. *Cancer Biomark.* 2009, 5, 241–251.
7. Michels, N.; van Aart, C.; Morisse, J.; Mullee, A.; Huybrechts, I. Chronic inflammation towards cancer incidence: A systematic review and meta-analysis of epidemiological studies. *Crit. Rev. Oncol. Hematol.* 2021, 157, 103177.
8. Lathigara, D.; Kaushal, D.; Wilson, R.B. Molecular Mechanisms of Western Diet-Induced Obesity and Obesity-Related Carcinogenesis—A Narrative Review. *Metabolites* 2023, 13, 675.

9. Imbroisi Filho, R.; Ochioni, A.C.; Esteves, A.M.; Leandro, J.G.B.; Demaria, T.M.; Sola-Penna, M.; Zancan, P. Western diet leads to aging-related tumorigenesis via activation of the inflammatory, UPR, and EMT pathways. *Cell Death Dis.* 2021, 12, 643.

10. Fabiani, R.; Minelli, L.; Bertarelli, G.; Bacci, S. A Western Dietary Pattern Increases Prostate Cancer Risk: A Systematic Review and Meta-Analysis. *Nutrients* 2016, 8, 626.

11. Yang, M.; Kenfield, S.A.; Van Blarigan, E.L.; Batista, J.L.; Sesso, H.D.; Ma, J.; Stampfer, M.J.; Chavarro, J.E. Dietary patterns after prostate cancer diagnosis in relation to disease-specific and total mortality. *Cancer Prev. Res.* 2015, 8, 545–551.

12. Bettiga, A.; Fiorio, F.; Di Marco, F.; Trevisani, F.; Romani, A.; Porrini, E.; Salonia, A.; Montorsi, F.; Vago, R. The Modern Western Diet Rich in Advanced Glycation End-Products (AGEs): An Overview of Its Impact on Obesity and Early Progression of Renal Pathology. *Nutrients* 2019, 11, 1748.

13. Clarke, R.E.; Dordevic, A.L.; Tan, S.M.; Ryan, L.; Coughlan, M.T. Dietary Advanced Glycation End Products and Risk Factors for Chronic Disease: A Systematic Review of Randomised Controlled Trials. *Nutrients* 2016, 8, 125.

14. Sergi, D.; Boulestin, H.; Campbell, F.M.; Williams, L.M. The Role of Dietary Advanced Glycation End Products in Metabolic Dysfunction. *Mol. Nutr. Food Res.* 2021, 65, 1900934.

15. Geicu, O.I.; Stanca, L.; Voicu, S.N.; Dinischiotu, A.; Bileanu, L.; Serban, A.I.; Calu, V. Dietary AGEs involvement in colonic inflammation and cancer: Insights from an in vitro enterocyte model. *Sci. Rep.* 2020, 10, 2754.

16. López-Díez, R.; Rastrojo, A.; Villate, O.; Aguado, B. Complex Tissue-Specific Patterns and Distribution of Multiple RAGE Splice Variants in Different Mammals. *Genome Biol. Evol.* 2013, 5, 2420–2435.

17. Archer, M.; Dogra, N.; Kyprianou, N. Inflammation as a Driver of Prostate Cancer Metastasis and Therapeutic Resistance. *Cancers* 2020, 12, 2984.

18. El-Far, A.H.; Sroga, G.; Jaouni, S.K.A.; Mousa, S.A. Role and Mechanisms of RAGE-Ligand Complexes and RAGE-Inhibitors in Cancer Progression. *Int. J. Mol. Sci.* 2020, 21, 3613.

19. Ozes, O.N.; Mayo, L.D.; Gustin, J.A.; Pfeffer, S.R.; Pfeffer, L.M.; Donner, D.B. NF- κ B activation by tumour necrosis factor requires the Akt serine-threonine kinase. *Nature* 1999, 401, 82–85.

20. Riehl, A.; Németh, J.; Angel, P.; Hess, J. The receptor RAGE: Bridging inflammation and cancer. *Cell Commun. Signal.* 2009, 7, 12.

21. Zhang, J.; Shao, S.; Han, D.; Xu, Y.; Jiao, D.; Wu, J.; Yang, F.; Ge, Y.; Shi, S.; Li, Y.; et al. High mobility group box 1 promotes the epithelial-to-mesenchymal transition in prostate cancer PC3

cells via the RAGE/NF-κB signaling pathway. *Int. J. Oncol.* 2018, 53, 659–671.

22. Antognelli, C.; Mandarano, M.; Prosperi, E.; Sidoni, A.; Talesa, V.N. Glyoxalase-1-Dependent Methylglyoxal Depletion Sustains PD-L1 Expression in Metastatic Prostate Cancer Cells: A Novel Mechanism in Cancer Immunosurveillance Escape and a Potential Novel Target to Overcome PD-L1 Blockade Resistance. *Cancers* 2021, 13, 2965.

23. Hanahan, D.; Coussens, L.M. Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. *Cancer Cell* 2012, 21, 309–322.

24. Schmidt, A.M.; Vianna, M.; Gerlach, M.; Brett, J.; Ryan, J.; Kao, J.; Esposito, C.; Hegarty, H.; Hurley, W.; Clauss, M.; et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. *J. Biol. Chem.* 1992, 267, 14987–14997.

25. Akkus, G.; Izol, V.; Ok, F.; Evran, M.; Inceman, M.; Erdogan, S.; Kaplan, H.M.; Sert, M.; Tetiker, T. Possible role of the receptor of advanced glycation end products (RAGE) in the clinical course of prostate neoplasia in patients with and without type 2 diabetes mellitus. *Int. J. Clin. Pract.* 2021, 75, e13723.

26. Palanissami, G.; Paul, S.F.D. RAGE and Its Ligands: Molecular Interplay Between Glycation, Inflammation, and Hallmarks of Cancer-a Review. *Horm. Cancer* 2018, 9, 295–325.

27. Aboushousha, T.; Lashen, R.; Abdelnaser, K.; Helal, N.; Moussa, M.; Omran, Z.; Eldahshan, S.; El Ganzoury, H. Comparative Expression of RAGE and SOX2 in Benign and Malignant Prostatic Lesions. *Asian Pac. J. Cancer Prev. APJCP* 2019, 20, 615–620.

28. Zhao, C.B.; Bao, J.M.; Lu, Y.J.; Zhao, T.; Zhou, X.H.; Zheng, D.Y.; Zhao, S.C. Co-expression of RAGE and HMGB1 is associated with cancer progression and poor patient outcome of prostate cancer. *Am. J. Cancer Res.* 2014, 4, 369–377.

29. Bao, J.M.; He, M.Y.; Liu, Y.W.; Lu, Y.J.; Hong, Y.Q.; Luo, H.H.; Ren, Z.L.; Zhao, S.C.; Jiang, Y. AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation. *Am. J. Cancer Res.* 2015, 5, 1741–1750.

30. Elangovan, I.; Thirugnanam, S.; Chen, A.; Zheng, G.; Bosland, M.C.; Kajdacsy-Balla, A.; Gnanasekar, M. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth. *Biochem. Biophys. Res. Commun.* 2012, 417, 1133–1138.

31. Kolonin, M.G.; Sergeeva, A.; Staquicini, D.I.; Smith, T.L.; Tarleton, C.A.; Molldrem, J.J.; Sidman, R.L.; Marchiò, S.; Pasqualini, R.; Arap, W. Interaction between Tumor Cell Surface Receptor RAGE and Proteinase 3 Mediates Prostate Cancer Metastasis to Bone. *Cancer Res.* 2017, 77, 3144–3150.

32. Aggarwal, R.; Huang, J.; Alumkal, J.J.; Zhang, L.; Feng, F.Y.; Thomas, G.V.; Weinstein, A.S.; Friedl, V.; Zhang, C.; Witte, O.N.; et al. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. *J. Clin. Oncol.* 2018, 36, 2492–2503.

33. Dai, X.; Fang, X.; Ma, Y.; Xianyu, J. Benign Prostatic Hyperplasia and the Risk of Prostate Cancer and Bladder Cancer: A Meta-Analysis of Observational Studies. *Medicine* 2016, 95, e3493.

34. McNally, C.J.; Ruddock, M.W.; Moore, T.; McKenna, D.J. Biomarkers That Differentiate Benign Prostatic Hyperplasia from Prostate Cancer: A Literature Review. *Cancer Manag. Res.* 2020, 12, 5225–5241.

35. Ishiguro, H.; Nakagawa, N.; Miyoshi, Y.; Fujinami, K.; Kubota, Y.; Uemura, H. Receptor for advanced glycation end products (RAGE) and its ligand, amphotericin are overexpressed and associated with prostate cancer development. *Prostate* 2005, 64, 92–100.

36. Kuniyasu, H.; Chihara, Y.; Kondo, H.; Ohmori, H.; Ukai, R. Amphotericin induction in prostatic stromal cells by androgen deprivation is associated with metastatic prostate cancer. *Oncol. Rep.* 2003, 10, 1863–1868.

37. Liao, Y.; Liu, S.; Fu, S.; Wu, J. HMGB1 in Radiotherapy: A Two Headed Signal Regulating Tumor Radiosensitivity and Immunity. *OncoTargets Ther.* 2020, 13, 6859–6871.

38. Lv, D.-J. The effect of HMGB1 and RAGE on the clinicopathological and prognostic features of prostate cancer. *J. Transl. Genet. Genom.* 2021, 5, 414–422.

39. Konopka, C.J.; Woźniak, M.; Heddli, J.; Siekierzycka, A.; Skokowski, J.; Pęksa, R.; Matuszewski, M.; Munirathinam, G.; Kajdacsy-Balla, A.; Dobrucki, I.T.; et al. Quantitative imaging of the receptor for advanced glycation end-products in prostate cancer. *Eur. J. Nucl. Med. Mol. Imaging* 2020, 47, 2562–2576.

40. Konopka, C.J.; Wozniak, M.; Heddli, J.; Ploska, A.; Schwartz-Duval, A.; Siekierzycka, A.; Pan, D.; Munirathinam, G.; Dobrucki, I.T.; Kalinowski, L.; et al. Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles. *Theranostics* 2018, 8, 5012–5024.

Retrieved from <https://encyclopedia.pub/entry/history/show/114478>