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Due to the advantages of edge computing in terms of latency, bandwidth, and security, it provides more effective

technical support for many applications that require real-time security. A security system is one of the applications

for edge computing in Internet of Things (IoT), where the core end device is a camera for surveillance and smart

security. Smart security based on object detection is one of the important applications of edge computing in IoT.

Anchors in object detection refer to points on the feature map, which can be used to generate anchor boxes and

serve as training samples. The training samples in object detection use anchors, which are feature points on the

feature map that can be used for classification and regression.

anchor assignment  object detection  loss aware

1. Introduction

Due to the advantages of edge computing in terms of latency, bandwidth, and security, it provides more effective

technical support for many applications that require real-time security. A security system is one of the applications

for edge computing in IoT, where the core end device is a camera for surveillance and smart security. Intelligent

security systems require accurate and real-time processing of images and video from cameras, which poses a

challenge to existing object detection technologies.

The training samples in object detection use anchors, which are feature points on the feature map that can be used

for classification and regression. In anchor-based detection models (e.g., RetinaNet ), multiple anchor boxes can

be tiled with anchors as the center, while in anchor-free models (e.g., FCOS ), anchors can be used as anchor

points to directly predict regression boxes. In recent years, although great breakthroughs have been made in object

detection, there are still some shortcomings in the definition of positive and negative samples in current object

detection. As the aspect ratio of the ground-truth (GT) boxes are not fixed, it is difficult for the ordinary center prior

to select suitable anchors as positive samples. Moreover, the distribution of objects within a GT box is uncertain,

there is often a large amount of background within the labeled GT box, and there may also be interference, such as

occlusion. In this case, the traditional approach based on fixed Intersection-over-Union (IoU) assignment  does

not select better positive samples, which poses a challenge for positive and negative sample assignment. To

address the problems posed by fixed IoU,  uses the statistical characteristics of IoU between the candidate

anchor boxes and a GT box to give the algorithm a different IoU threshold. Ref.  proposes a new anchor quality

evaluation scheme and uses the quality scores of anchors fitting a probability distribution to achieve a truly

dynamic assignment; however, the computational effort is large and reduces the training speed.
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2. Anchor Assignment in Object Detection

2.1. Anchor-Based and Anchor-Free Detectors

Object detection is a fundamental yet challenging task in computer vision, requiring the model to predict a

bounding box with a category label for each target object in the image. Currently, deep-learning-based object

detection algorithms dominate and can be divided into anchor-based and anchor-free approaches according to

whether an anchor box is predetermined. Anchor-based object detection algorithms can be classified into two-

stage methods (e.g., R-CNN , Fast R-CNN , Faster R-CNN , and R-FCN ) and single-stage methods (e.g.,

SSD  and RetinaNet ) according to whether candidate boxes are generated or not. These methods first tile a

large number of pre-defined anchor boxes on the image, then predict the category, refine the coordinates of these

anchor boxes one or more times, and finally output these refined anchor boxes as prediction boxes. The two-stage

methods are slow but accurate; however, the advent of FPN  and Focal Loss  has enabled single-stage

methods to achieve the same accuracy as two-stage methods at a faster speed.

Anchor-based object detection methods require artificially setting parameters such as the scale and aspect ratio of

the anchor box according to the characteristics of the dataset, resulting in parameter sensitivity and poor

generalization of the detector. Therefore, anchor-free detectors have gradually become a research hotspot.

Anchor-free detectors can be divided into center-based methods (e.g., FCOS ) and keypoint-based methods

(e.g., CornerNet  and ExtremeNet ). Anchor-free detectors can directly predict objects without pre-defined

anchor boxes, eliminating the hyperparameters associated with anchor boxes and achieving similar performance to

anchor-based detectors, while also giving them more potential in terms of generalization capability.

The anchor point In FCOS is equivalent to the center of the anchor box in RetinaNet. An anchor point and the

corresponding anchor box both correspond to the same location on the feature map. Therefore, they are

collectively referred to as an anchor in this research when there is no need to distinguish between an anchor point

and anchor box.

2.2. Loss Function in Object Detection

Losses in object detection models typically include classification losses and regression losses, corresponding to

the classification and regression branches, respectively. Calculating the loss based on the ground truth and the

predicted values output by the detection head allows back-propagation to update the model parameters. The main

classification losses commonly used in object detection models are OHEM , Focal Loss , GHM , Quality

Focal Loss , and Varifocal Loss , and the main regression losses are IoU Loss , Distribution Focal Loss

, GIOU Loss, and DIoU and CIoU Loss . In addition, some object detection models add a parallel auxiliary

branch to the regression branch, such as the centerness branch in  and the IoU branch in . These

branches predict a centerness or IoU for each anchor and can also calculate the loss from the true value, which is

usually calculated using binary cross entropy (BCE) loss.

2.3. Anchor Assignment in Object Detection
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Positive and negative sample assignment refers to the process of determining whether each anchor should be

assigned as a positive or negative sample during training, a process also known as training sample selection,

anchor assignment, and label assignment. Anchor assignment during training is an important factor affecting the

performance of the object detection model. Figure 1a shows the anchor inside the GT box. The white box is the

GT box and the different colors of anchors represent the high or low quality of the anchors. The red anchors are

located in the background rather than the object and should be classified as negative anchors. The yellow anchors

contain part of the object information and hence are not optimal positive anchors. Green anchors contain rich

object information and should be used as positive anchors. Anchor assignment is used to pick out the green

anchors and avoid the red anchors. The white box in Figure 1b is the GT, the green box is one of the anchor boxes

corresponding to the green anchor, and the red box is their intersection area. By calculating the proportion of the

intersection area to the concatenation of the two boxes, the IoU of the anchor box and the GT box can be obtained.

People hope that the IoU of the predicted box and the GT box is as large as possible, rather than the IoU of the

anchor box and the GT box.

Figure 1. Example of anchors and the IoU of a GT box. (a) The white box is the GT box. The red dots are anchors

that need to be assigned as negative anchors. The yellow dots are anchors that are better than red anchors, but

not optimal positive anchors. The green dots are anchors which are expected to be assigned as positive anchors.

(b) The white box is the GT box, and the green box is one of the anchor boxes of the green anchor. The red box is

the intersection area between these two boxes.

Traditional positive and negative sample assignment strategies use manually designed hard assignments. Anchor-

based detection models (e.g., RetinaNet ) empirically lay nine anchor boxes of different scales and aspect ratios

at each location, and use a fixed IoU threshold to classify the anchor boxes into positive, ignored, and negative

samples. This assignment requires multiple anchor boxes to be tiled per location, with many hyperparameters and

a large computational cost. Anchor-free detection models (e.g., FCOS ) discard the tiling of anchor boxes and

assign positive and negative samples using spatial constraints (i.e., restricting positive anchor points to inside the

GT boxes) and scale constraints (i.e., setting a fixed maximum regression range for each feature layer). The
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subsequent FCOS  uses center sampling on top of the original constraints. The shortcoming that the above

hard-assignment approaches all have in common is that they do not take into account the fact that the most

meaningful anchors are not equally distributed within the GT boxes for objects of different sizes, shapes, or

occlusion conditions, and the conditions for dividing positive and negative samples are not the same.

Due to the inadequacy of hard-assignment approaches, many algorithms for adaptively assigning anchors have

emerged. For example, MetaAnchor  and Guided Anchoring  argue that tiled anchor boxes are not optimal.

MetaAnchor uses the anchor function to dynamically generate anchor boxes from arbitrary customized prior boxes,

thus changing the shape of anchor boxes during training. Guided Anchoring proposes the Guided Anchoring

Region Proposal Network (GA-RPN), which generates anchor boxes through additional network modules to better

fit the distribution of various objects. Both MetaAnchor and Guided Anchoring modify the structure of the model

itself to varying degrees. FreeAnchor  defines the training process as one of maximum likelihood estimation

based on classification loss and regression loss, and constructs a candidate set of anchors for each GT box.

However, when a GT box has many high-quality anchors, this approach does not match the GT box well to the

appropriate anchor.

ATSS  uses the sum of the mean and standard deviation of IoU values from a set of the closest anchors as the

dynamic threshold. However, as the anchor boxes are constant, for the same GT box, this threshold is invariant

during the training process. Moreover, using L2 distance is not reasonable for some GT boxes with a large

difference in length and width. NoisyAnchors  proposes cleanliness scores, using soft labels and re-weighting

based on classification and localization losses, which mitigates the effect of noise in the anchors but fixes the

number of positive anchors throughout the training process. MAL  uses linear scheduling to reduce the number

of positive samples as training proceeds but is prone to fall into suboptimal solutions and requires heuristic feature

perturbations to mitigate this issue. PAA  assumes that the joint loss distribution of positive and negative samples

follows the Gaussian distribution, and uses the Gaussian Mixture Model (GMM) to cluster the candidate positive

samples to obtain the final positive samples. This approach does not make use of the shape of the GT box. In

addition, the GMM requires continuous iteration, which is computationally intensive and extends the training time.
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