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Biodegradable membranes with innovative antifouling properties are emerging as possible substitutes for

conventional membranes. These types of membranes have the potential to be applied in a wide range of

applications, from water treatment to food packaging and energy production.

biopolymer  biodegradable membrane  green membrane

1. Introduction

Membrane technology has been extensively used in various applications, including but not limited to

waste/wastewater treatment, gas separation, hemodialysis, energy production, drug delivery, and the food industry.

Polymeric membranes are mainly employed in all those separation processes . The production and disposal

processes of polymeric membranes result in unsustainable accumulations of waste and several environmental

concerns . Even though these types of membranes are more prevalent and dominate the membrane

market, they are still subject to waste disposal challenges, chemical, mechanical, and thermal stability concerns, as

well as the membrane fouling issue . As an environmentally friendly and sustainable approach to solving these

problems, biodegradable membranes have been introduced, especially to reduce the amount of waste disposal.

Under favorable conditions in the environment in terms of pH, humidity, and temperature, biodegradable

membranes are broken down into non-toxic compounds by enzymes and microorganisms in nature .

Biodegradable membranes proved to be potential substitutes for conventional membranes in various applications

such as oil/water separation, dye removal, tissue engineering, food packaging, fuel cells, etc. .

2. Green Membrane Materials

Synthetic polymer materials have been developed less than 100 years ago but because of their low ability to be

utilized in nature are considered to have serious ecological impact on the environment. The interest in

biodegradable plastics is constantly increasing, and their production is forecasted to reach more than 1.3 million

tons in 2024 . The main position on the biopolymers market belongs to the Asia-Pacific region, North America,

and Europe . All biodegradable polymeric materials considered in this chapter could be divided into two main

classes: bio-sourced and synthetic. Synthetic materials, in turn, fall into two categories: petrochemical and made

out of renewable sources, which is illustrated on Figure 1.
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Figure 1. Classification of biodegradable polymers.

2.1. Bio-Sourced Polymers for Membrane Fabrication

Bio-sourced materials have been used by humanity since ancient times as materials for construction (wood), tools

(wood, bones), cloth (plants, leather, wool, fur), jewelry (bones, wood, amber), and other. Nowadays bio-sourced

crude is also used to create new materials, including membranes. The majority of bio-sourced polymers used for

membrane fabrication are carbohydrates/polysaccharides and their derivatives. The origin of bio-sourced materials

possesses a high degree of biodegradability that makes them attractive as green materials to be used for reducing

pollution of the environment with plastic wastes.

2.1.1. Cellulose and Its Derivatives

Cellulose is one of the first materials used for membrane production. Thus, the first membrane for hemodialysis

was produced from cellophane, which is the product of cellulose treatment. Cellulose is one of the most prevalent

polysaccharides that occurs in natural sources like trees and plants. Saccharide monomer units in cellulose (see

Figure 2A) macromolecules are arranged predominately in a linear manner, which results in its fiber structure and

high mechanical properties.
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Figure 2. Chemical structure of polysaccharides polymers and their derivatives. (A) Cellulose and Its Derivatives;

(B) Chitin and Chitosan; (C) Carrageenan; (D) Alginate.

Due to the presence of active hydroxyl groups in the saccharide unit, cellulose is widely used for its modification to

obtain new artificial materials with improved properties. Some of the structures that resulted from cellulose

modification are presented on Figure 2A.

Thus, the most common cellulose derivative is cellulose triacetate, which is, along with other cellulose derivatives,

used as the fabrication material for membranes applied in many industries such as oil-water separation ,

antifouling improvement , virus removal , heavy metal adsorption , desalination , hemodialysis

, and gas separation .

2.1.2. Chitin and Chitosan
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Chitosan is the second (after cellulose) most abundant biopolymer in nature that can be found in insects, shells,

mollusks, shrimps, crabs, fungi etc. It also can be derived from chitin (the exoskeleton of many living creatures,

insects in particular) by its deacetylation (see Figure 2B).

Though this biopolymer is widely spread in nature, the research of chitosan began only in the 1980s because of the

structure’s features and insolubility in water .

Examples of chitin and chitosan membranes applications are ion exchange membranes , wastewater

treatment , oil-water separation , dye removal , etc.

2.1.3. Carrageenan

Carrageenan is a naturally occurred polysaccharide containing sulphate groups. This polymer can be extracted

from red algae, particularly from Rhodophyceae . Depending on the degree of sulfanation, there are three

classes of carrageenan: kappa, iota, and lambda. The structure of carrageenan is shown on Figure 2C. One

carrageenan application example is the super-oleophobic membrane for the removal of dyes and heavy metals .

2.1.4. Other Polysaccharides and Biopolymers

Starch is another example of a polysaccharide. It is one of the most abundant biopolymers in nature and can be

found in such common products as potato, corn, and rice. Due to its branched structure, resulting in poor

mechanical properties, starch can be hardly used as the main material for membrane production . Thus, starch

was reported to be used as an additive to produce membranes for wastewater treatment .

Cyclodextrin (CD) can also be used as an additive for the improvement of hydrophilicity and permeability of

membranes used for water treatment . The functionalization of hydroxyl groups to amino, sulphonyl, and other

groups resulted in the further improvement of membrane selectivity by enhancing porosity and hydrophilicity .

Alginate is a naturally occurring anionic water-soluble linear polysaccharide composed of α-L-guluronic acid and β-

D-mannuronic acid (see Figure 2D), typically obtained from brown seaweed (Phaeophyceae), including Laminaria

hyperborea, Laminaria digitata, Laminaria japonica, Ascophyllum nodosum, and Macrocystis pyrifera . Alginate-

containing membranes were reported to be used for dyes and heavy metal removal .

Silk fibroin is another natural biopolymer, extracted from insects’ cocoons when treating them with hot alkali

solution . This protein is added to membranes to improve their adsorption of heavy metal ions .

Similar to fibroin, collagen can be extracted from animal connective tissues . Despite being sensitive to pH,

temperature, and bacteria, collagen can be used for membrane fabrication, though its application is limited. Due to

its protein nature, collagen is perfectly suitable to create fiber-type membranes for oil-water separation  and

pervaporation .
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Polyhydroxybutyrate (PHB) is bio-derived polyester (see Figure 3) that is produced by some microorganisms such

as Cupriavidus necator, Methylobacterium rhodesianum, or Bacillus megaterium during assimilation of glucose or

starch .

Figure 3. Chemical structure of polyhydroxybutyrate.

This polymer has a tensile strength close to polypropylene, making it suitable to manufacture fibers. As a result,

PHB has been used to prepare electrospun fibers-based membranes with improved antibacterial properties for

medical applications, dye removal, and microfiltration .

2.2. Synthetic Biodegradable Polymers

2.2.1. Polymers Synthesized from Renewable Sources

Polylactic Acid

Polylactic acid (PLA) is a thermoplastic polyester that is produced by polycondensation of lactic acid or ring-

opening polymerization of cyclic diester-lactide (see Figure 4). Lactic acid, in turn, is produced from a renewable

bio-source, such as sugarcane or starch,  by aerobic fermentation . PLA is one of the most researched and

mass-produced biodegradable polymers.
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Figure 4. Synthesis routes PLA.

PLA belongs to semicrystalline polymers. PLA-application temperatures are limited by its low glass-transition

temperature (T  = 55–60 °C) and melting temperature (T  = 170–180 °C) . PLA is suitable to prepare

membranes based on electro-spun fibers for oil-water separation  and tissue regeneration . PLA

biodegradation proceeds quite fast to CO  and water , which meets all the requirements of all standards for

biodegradable plastics . PLA is also suitable for decomposition as a part of compost .

Polybutylene Succinate

Polybutylene succinate (PBS) is another (like PLA) example of a biodegradable polyester that is produced by

polycondensation of succinic acid and 1,4-butanediol. Succinic acid can be produced through biomass

fermentation  by further hydrogenation to 1,4-butanediol . The further polycondensation process of succinic

acid and 1,4-butanediol proceeds in two steps and requires catalysts to produce a polymeric PBS from its

oligomers, obtained in the first step (see Figure 5). The first mass production of this polymer began in 1990s in

Japan by the Showa Highpolymer company . PBS are reported to be used for the fabrication of membranes for

pervaporation and other applications . PBS biodegradation in soil was reported to proceed with 65%

carbon mineralization (conversion to CO ) for 425 days .

Figure 5. Circuit diagram of polybutylene succinate synthesis.

2.2.2. Petrochemical Polymers

Poly-ε-caprolactone

Poly-ε-caprolactone is an aliphatic polyester, produced by ring-opening polymerization of ε-caprolactone (see

Figure 6A) . This polymer has a low Tg = −55–60 °C and low melting point of Tm = 60–65 °C and good

resistance to oil and water. Examples of using poly-ε-caprolactone for membranes include dye removal , wound

dressing , antifouling , treatment blood infections , and guided tissue regeneration  applications.

Furthermore, poly-ε-caprolactone is highly degradable polymer. Thus, Pseudozyma japonica-Y7-09 enzyme, which

is present in different microorganisms, results in Poly-ε-caprolactone degradation by 93.3% for 15 days for polymer

film and 43.2% for 30 days when the polymer was made as foam plastic .
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Figure 6. Synthesis routes of some petrochemical derived biodegradable plastics. (A) Poly-ε-caprolactone; (B)

Poly-propylene Fumarate; and (C) Poly-ethylene Glycol.

Poly-propylene Fumarate

Polypropylene fumarate (PPF) is an aliphatic polyester, containing a double bond in the main chain. This polymer

can be produced by multistep synthesis (see Figure 6B) . Because of the presence of double bonds, this

polymer can be cross-linked by various methods which, results in the broad mechanical properties of the resultant

structures . Although, the mechanical properties are still low and limit the use of PPF for the membrane and

other applications. However, some new approaches have been applied by the introduction of nanofillers into PPF

to improve its properties . The in vitro biodegradation of PPF scaffolds revealed nearly 17% mass loss at 6

weeks .

Poly-ethylene Glycol

Polyethylene glycol (PEG) is a synthetic polyether that can be produced by various ways: from ethylene oxide,

ethylene glycol, or ethylene glycol oligomers (see Figure 6C).

PEG production has been reported in 1859 by both A. V. Lourenço and Charles Adolphe Wurtz, independently.

PEG membranes are predominately used for drug release systems . In addition, PEG is well known

to possess sensitivity to oxidative degradation ; thus, this material is substantial to oxidative biological

degradation by different microorganisms .

Poly-vinyl Alcohol

Polyvinyl alcohol (PVA), unlike most of other vinyl polymers, cannot be produced by polymerization of its monomer

units because vinyl alcohol is thermodynamically unstable. PVA is predominately produced by hydrolysis of
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polyvinyl acetate (see Figure 7). Hydrolysis reaction is usually proceeded in the presence of ethanol but can be

easily done without it.

Figure 7. Polyvinyl alcohol synthesis from polyvinyl acetate hydrolysis.

PVA has been reported to use for membrane preparation for wound dressing applications . In addition, PVA

is biodegradable in the presence of different microorganisms under two-step metabolic processes, including

oxidation and hydrolysis .

Polyurethane and Polyurethane Urea

Polyurethanes (PU) are one of the most produced polymers in the world. Around 25 million tons of this class of

polymer was produced in 2019, which is about of 6% of all manufactured polymers . The interest to

polyurethanes is determined by the broad chemical variety of monomer units, resulting in a wide range of physical

properties–from rigid and strong plastics to flexible elastomers . Linear PU are basically produced during

polycondensation reaction between diisocyanates and diols (see Figure 8A, step 2A) with the ability to produce

polyurethane urea when a diamine chain extender is used on the second synthesis step (see Figure 8A, step 2B).
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Figure 8. Synthesis routes of biodegradable PU and PU urea.

Polyurethanes were known for a long time as non-degradable polymers. For the last decades, biodegradable PU

were developed by using monomer units with hydrolysable bonds (e.g., ester, amide) groups . Examples of

oligomeric diols  used for biodegradable PU synthesis are given on Figure 8B. A broad opportunity to

adjust and control PU chemistry and structure makes PU degradable by enzymes, fungi, and bacteria .

PU applications include sprayable membranes , tissue repair , and many other biomedical applications .

The biodegradable membranes synthesis routes and main applications are summarized in Table 1.

Table 1. Green chemistry biodegradable membranes chemistry and applications.
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No. Membrane Material Synthesis Method Main Applications

Bio-sourced

1
Cellulose derivatives

(acetates, carboxymethyl
etc.)

Processing of cellulose containing biomaterials
(plants, trees)

Water treatment and
separation, gas

separation, biomedical
applications
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Processing of chitin containing biomaterials
(insects, shrimps, crabs etc.). Deacetylation
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Dyes and heavy metals
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removal
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9 Polyhydroxybutyrate
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Synthesized from bio-sourced chemicals

1 Polylactic acid
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Water separation, tissue
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2 Polybutylene succinate
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butanediol. Succinic acid is produced by
biomass fermentation. 1,4-butanediol is

produced by succinic acid hydrogenation

Pervaporation

Petrochemical
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Drug release systems

4 Poly-vinyl alcohol Hydrolysis of polyvinyl acetate Wound dressing

5
Polyurethane and
polyurethane urea

Polycondensation of diisocyanates with diols
and diamines

Biomedical application,
agriculture
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