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Stochastic programming is used to solve optimization problems in which the majority of the parameters are

probabilistic. Probabilistic optimization can make efficient use of information, both in terms of selecting evaluation

points and the message they convey. It can handle many sorts of noise and adapts to various aspects of

optimization issues. Unlike deterministic optimization, probabilistic optimization techniques discover the best

solution for data with randomness.

probabilistic optimization

1. Probabilistic Optimization

Stochastic programming is used to solve optimization problems in which the majority of the parameters are

probabilistic . Probabilistic optimization can make efficient use of information, both in terms of selecting

evaluation points and the message they convey. It can handle many sorts of noise and adapts to various aspects of

optimization issues. Unlike deterministic optimization, probabilistic optimization techniques discover the best

solution for data with randomness . As indicated in Figure 1, there are multiple probabilistic optimization

categories: stochastic optimization, robust optimization, distributionally robust optimization, and chance-

constrained optimization.
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Figure 1. Classification of probabilistic optimization.

1.1. Stochastic Optimization

Stochastic optimization is critical for addressing uncertainty in optimization problems. Due to computing problems,

uncertainty is typically disregarded in classical optimization, but breakthroughs in computational techniques now

allow for the efficient handling of uncertainties . Stochastic optimization is concerned with strategies for

minimising or optimising an uncertain objective function. In contrast to deterministic optimization issues, stochastic

optimization problems do not have a single solution. To solve the issue tractably, structural assumptions such as a

constraint on the size of the choice variables, the result space, or convexity are required . Traditionally, stochastic

optimization modeled uncertainties as random variables with well-defined distributions .

1.1.1. Architecture of Stochastic Optimization

The objective function is typically optimized over the expected value of the uncertain parameters for the formulation

of stochastic programming, as shown in Equation (1). Where x is the decision variable that belongs to set X, Ep is

the expected value of the random variable ξ. Stochastic optimization is graphically represented in part a of Figure

2, where P is the probability distribution of random variable ξ. An exact distribution is required for the uncertainties,

which cannot be estimated with the empirical data accurately . Either all scenarios or scenarios with probability

guarantees are feasible for the modeled solution. In stochastic optimization, sample-based techniques are

commonly utilizeddue to the difficulty of obtaining the correct distribution of random variables. A greater sample

size is utilizedto get higher probability guarantees, increasing computing complexity .

(1)

(1)

[3]

[4]

[5]

[6]

[3]

inf
x

Ep {f(x, ξ)}

s. t x ∈ X
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Figure 2. Graphical comparison of: (a) stochastic optimization; (b) robust optimization; (c) distributionally robust

optimization; (d) chance constrained optimization.

The probability distribution determines the level of uncertainty in stochastic optimization. In basic scenarios,

uncertainty is well known, but in practise, it is only partially unknown. The accuracy of stochastic optimization is

influenced by the model specifics and availability of possible scenarios. If a stochastic framework is used for all

scenarios, the problem becomes more difficult. A trade-off between number of scenarios and, computing time, and

complexity is required .

1.1.2. Taxonomy of Stochastic Optimization

Stochastic optimization can be categorized into single stage problems and recourse problems. The recourse

problems can be further classified into two stage and multistage problems as shown Figure 3 . In single stage

problems, a single but optimal decision is obtained where in recourse optimization problems, it is essential to know

the probability distribution of the random variable in the first step, where the second step (correction of that

decision) is being performed. In the two stage stochastic optimization the decision maker must make judgments in

two stages (at two distinct times) for a given phenomenon with uncertainty. The first stage choice is critical since it

must be made based on some random factors gleaned from previous experience or a survey.

[3]

[7]
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Figure 3. Taxonomy of stochastic optimization.

Two-stage stochastic optimization problems may have fixed recourse or complete recourse. In case of fixed

recourse, the first stage is prediction stage where in second-stage, fixed decision is done based on the results of

the experiment . Two-stage stochastic optimization problems will be considered as a complete recourse if, for

every scenario, there always exists a viable second solution . Multistage stochastic programming is an extension

of two stage stochastic programming to the sequential realization of uncertainty. Majority of the real time problems

lies in the domain of multistage stochastic optimization which entail a series of decisions in response to changing

outcomes over time .

1.2. Robust Optimization

Robust optimization is a relatively new technique for optimising in the presence of uncertainty. Rather than using a

stochastic model, it uses a deterministic, set-based uncertainty model. The robust optimization solution is valid for

any specification of the uncertainty in a given set. The reason for robust optimization is that it accounts for both set-

based uncertainty and computational tractability . Robust optimization and the respective computational tools

deal with optimization problems in which the information are indeterminate and belong to some set of uncertainty

. Robust optimization ensures that the worst-case scenario is realized, ensuring that the solution is both

practical and optimal for a given set of uncertainties. Robust optimization is not chosen in some applications due to

[8]
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its conservative nature, however it is used in the power industry to preserve reliability. Robust optimization

necessitates a considerable amount of knowledge about the uncertainty, such as its size and range .

1.2.1. Architecture of Robust Optimization

Robust optimization is a realization of worst-case parameters that belong to the uncertainty set. Worst case

realization of robust optimization sometimes becomes unrealistic in practice . The architecture of robust

optimization is available in Equation (2), where x is the decision variable that belongs to set X, ξ is a random

variable belonging to the uncertainty set U. Robust optimization can be graphically represented as shown in

part b of Figure 2.

(2)

(2)

1.2.2. Taxonomy of Robust Optimization

Robust optimization can be categorized as shown in Figure 4, and is discussed as follows.

Figure 4. Taxonomy of robust optimization.

Strict robustness: This optimization type is sometimes known as classic robust optimization, min–max

optimization, absolute deviation, one-stage robustness, or simply robust optimization. It is treated, as the

fundamental starting point in the area of robustness. A solution x is called strictly robust if it is feasible for all

possible scenarios of uncertainty set U .

Cardinality constrained Robustness: In cardinality constrained robustness, reduction in uncertainty’s space can

relax strictness in robust optimization. Analyzing the worst-case scenario in robust optimization, it is improbable

that all the uncertainty set parameters will change simultaneously. Hence, it restricts uncertainty space by

varying some parameters while considering fixed values for the remaining .

Adjustable robustness: In adjustable robustness, the uncertainty space of strict robustness gets relaxed by

dividing uncertainty space into groups of variables such as here and now and wait-and-see. Variables from the

[3]

[6]

inf
x

sup
ξ ∈ U

f(x, ξ)

s. t x ∈ X

[11]
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here and now group must be evaluated before the scenario ξ∈U is determined where variables from the wait-

and-see group can be determined once the scenario ξ is known .

Light robustness:In light robustness, relaxing the constraints in terms of quality can reduce the strictness of the

robust optimization, rather than reducing the space of uncertainty. Light robustness develops a trade-off

between quality and robustness of the solution .

Regret robustness: In regret robustness, the objective function relaxes the problem. Rather than to minimize the

worst case performance of the solution, regret robustness reduces the difference of objective function having

the best solution and the objective function that would have been possible in a scenario .

Recoverable robustness: Concept of recovery algorithm gets exploited in recoverable robustness and family of

recovery algorithms which is represented by B. It provides the solution in two stages, such as adjustable

robustness. A solution x is called recovery robust with respect to recovery algorithm A if for any probable

situation ξ∈U an algorithm A∈B exist such that when A is applied to the solution x and the scenario ξ makes a

solution A(x;ξ)∈F(ξ) .

1.3. Distributionally Robust Optimization

Distributionally robust optimization, also known as min–max stochastic programming, reduces the computational

complexity of stochastic programming and conservative nature of robust optimization. It turns up optimal decisions

for the worst-case probability distributions within a family of possible distributions, defined by specific

characteristics such as their support vector and moments information . As compare to stochastic programming, it

is less dependent on the data having an exact probability distribution. Due to the incorporation of probability

distribution and concept of ambiguity sets, the result becomes less conservative as compared to simple robust

optimization .

1.3.1. Architecture of Distributionally Robust Optimization

A distributionally robust optimization or min–max stochastic programming model act as a bridge between robust

and stochastic optimization. It usually takes the form, as shown in Equation (3). where x is the decision variable

that belongs to set X, P is the probability distributions that belongs to an ambiguity set D, ξ is the random variable,

and Ep is expected value of the random variable . Distributionally robust optimization can be graphically

represented as shown in part c of Figure 2. The random variable ξ belongs to probability

distribution P where P itself belongs to ambiguity set D.

(3)

(3)

1.3.2. Taxonomy of Distributionally Robust Optimization

[13]

[14]

[15]

[16]

[5]
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[6]

inf
x

sup
P∈D

Ep [f(x, ξ)]

s. tx ∈ X
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Various categories of distributionally robust optimization (DRO) are shown in Figure 5 and are discussed as

follows. DRO is a strong modeling paradigm for optimization under uncertainty that arises from the realization that

the probability distribution of uncertain parameters of the the problem is uncertain in-itself. As a result the concept

of ambiguity set arises which is defined as a set in which the modeler considers that the real distribution of the

uncertain parameters of problem has uncertainty. Naturally, the ambiguity set’s creation is critical to DRO’s actual

effectiveness. DRO can be classified on the basis of characteristics and specifications of ambiguity set which are

described as follows .

Figure 5. Taxonomy of distributionally robust optimization.

(1) Moment-based approach: The ambiguity set in moment based approach is the set of all probability distributions

whose moments satisfy certain constraints .

(2) Dissimilarity-based approach: The ambiguity set in this case is the set of all probability distributions whose

dissimilarity to a nominal distribution is lower than or equal to a given value. In this category, the choice of the

dissimilarity function leads to couple of different variants which are as follows .

[18]

[19][20]

[18]
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(a) Optimal-transport-based (OTP) approach: The authors in  applied Wasserstein distance as a

dissimilarity function which shows some nice statistical convergence properties.

ϕ-Divergences based approach: This group consist of all those techniques which uses ϕ-divergences such as

Kullback–Leibler divergence, as was described in . Approaches used in  are based on likelihood

which also belongs to this category.

1.4. Chance Constrained Optimization

Chance constrained optimization solves the problems having constraints, in which finite probability get violated. As

compared to conventional optimization problems, chance constrained optimization problems face a challenge when

inequality function is not available explicitly. Hence, no suitable algorithmic or theoretical properties are evident,

such as differentiation, continuity and concavity. A general solution method for chance constrained programming

does not exist, but it depends on the interaction of decision and random variables in the constraint model .

1.4.1. Architecture of Chance Constrained Optimization

In general chance constrained optimization can be expressed as in inequality, as shown in Equation (4), where it

can be graphically represented as shown in part d of Figure 2:

(4)

(4)

In Equation (4), ξ and x are random and decision vector, respectively, P is probability measure, h(x,ξ)≥0 represents

a finite system of inequalities. p∈[0,1] is known as probability level and is chosen by decision maker for safety

requirements .

1.4.2. Taxonomy of Chance Constrained Optimization

Chance constrained optimization problems can be categorized based on constraints involved as shown in Figure

6. It may have individual, joint, or mixed chance constrained. In individual chance-constrained optimization

problems, each element of the stochastic inequality system is transformed into several chance constrained in a

unique way where in joint chance-constrained optimization problems, the probability is considered over the

stochastic inequality system as a whole. Chance constrained optimization in Equation (4) can be expressed as an

individual and joint chance-constrained, as shown in Equations (5) and (6), respectively, . Mixed chance

constrained optimization problems may comprize numerous multivariate chance constrained . Individual chance

constrained are simple but unreliable compared to joint chance constrained; hence joint chance constrained are

used to guarantee the decision at a given probability level .

[21][22]

[23][24] [25][26]

[27]

P [h(x, ξ)] ≥ p

[27]

[27]

[28]

[27]
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(5)

(5)

(6)

(6)

Based on the constraints involved in chance constrained optimization problems, it may be linear random vector,

separated random vector, coupled random vector, or decision vector. Most important model of chance constrained

system is linear random vector. Linear random vector is shown in Equation (4) where the constraint h may adopt

different form such as expressed in Equations (7) and (8).

(7)

(7)

(8)

(8)

where A(ξ) and A are stochastic and deterministic matrices, respectively, b is a constant vector of suitable size, g is

the function of decision vector x, The model shown in Equations (7) and (8) represents separated and coupled

random vector, respectively. In isolated random vector, random vector and decision vector appear separated while

combined in the coupled vector model. The random vector may be continuous, discreet, independent or correlated

.

P [hj (x, ξ)] ≥ 0 ≥ pj (j = 1, 2, 3, … , m)

P [hj (x, ξ)] ≥ 0 (j = 1, 2, 3, … , m) ≥ p

h(x, ξ) = g(x) − A ⋅ ξ

h(x, ξ) = A(ξ)g(x) − b

[27]
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Figure 6. Taxonomy of chance constrained optimization.

2. Applications, Objectives and Solution Algorithms of
Probabilistic Optimization

2.1. Applications, Objectives and Solution Algorithms of Stochastic Optimization

Applications of stochastic optimization shown in Table 1. Microgrid energy management problems might be seen

as having uncertainty in plug-in electric vehicles and distributed renewable energy supplies . The authors in 

used stochastic dynamic programming to analyse smart home energy management with uncertainty in plug-in

electric vehicles. The optimization problem is approached as non-linear programming, and the distribution of

electric power among various smart home components is optimized.

Table 1. Applications of stochastic optimization and its problem type.

[29] [30]

References Applications LP NLP MILP MISOCP MIQP

 HEM  ×    

 MEM  ×    

 OPF   ×   

 DRM   ×   

 ED  ×    

 UC ×  ×   

 STG     ×

 RDG    ×  

[30]

[31]

[32]

[33][34]

[35][36]

[37][38]

[39]

[40]
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The energy management problem of a smart thermal grid with aquifer thermal energy storage is solved using a

stochastic model predictive control framework. Mixed-integer quadratic programming is used to solve the problem.

The developed model is used to capture the aquifer’s injection and extraction imbalances, as well as the undesired

mutual interaction of aquifer thermal energy storage and smart thermal grid . The problem of probabilistic

optimal power dispatch for microgrid is defined as non-linear programming. The operating cost is minimizedthrough

particle swarm optimization, and the optimization problem is handled appropriately .

In day-ahead transmission network planning, a probabilistic model is utilizedto schedule demand response. For the

best demand response scheduling, network security and consumer economic factors are applied. Thermal units

and renewable energy resources have been modeled, and the problem has been formulated using mixed-integer

linear programming . Residential appliances use real-time demand response management with stochastic and

robust optimization. The mathematical model is developed using mixed-integer linear programming, and the

electricity bill is reduced as compared to flat rate .

The probabilistic model has better performance to solve the smart power system economic dispatch problem as

compare to the negative load reduction model for various cases . Economic operation of future distribution grid

is discussed, and the stochastic model is developed to find the optimal operation of small-scale energy resources

and load . Non-linear programming is used to develop mathematical model of the system as described in .

A stochastic model is utilizedto reconfigure the distribution grid and model distributed photovoltaic generation in this

study. The distribution grid is operated at its most cost-effective level, and different constraints such as power

balance and power flow limits are met. The grid’s reliability and stability have also been improved, which is an

important component of incorporating renewable energy sources. Mixed-integer second-order cone programming

is used to solve the optimization problem .

The stochastic optimization method is used to solve a unit commitment problem with a demand response that is

uncertain. It is demonstrated that by taking the uncertainty of demand response into account in a probabilistic

manner, generating capacity may be enhanced . The model was created to deal with uncertainty in the unit

commitment problem while minimizing the system’s operating costs. To acquire an efficient solution for the system,

parallelization and decomposition strategies are applied . The integration of storage devices and a high

penetration of renewable energy resources is demonstrated in a unit commitment and economic dispatch model. It

is concluded that the consideration of storage devices to reduce operational cost is quite effective. Linear

programming is used to formulate optimization problem in , where in  mixed-integer linear programming is

applied.

For day-ahead optimal power flow, stochastic optimization is used, which can help to improve economic benefits.

The uncertainties of wind power and load are incorporated into DC optimal power flow. The problem is expressed

as a mixed integer linear programming problem that is solved using the two-point estimation approach. To

determine the ideal number of switching each hour, a framework based on probability decisions is designed, taking

into account risk cost and economic rewards .

[39]

[31]

[33]

[34]

[35]

[36] [35][36]

[40]

[38]

[41]

[38][41] [37]

[32]
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2.2. Applications, Objectives and Solution Algorithms of Robust Optimization

In a smart power system, robust optimization has a variety of applications with dynamic objectives. Table 2 shows

the applications, and Table 3 summarizes the objectives.

Table 2. Applications of robust optimization and its problem Type.

Table 3. Objectives of robust optimization and its solution algorithms.

Ref. Applications LP NLPMIPMILPMINLPMIBLPMISOCPMIQP QP

 SGEM    ×      

 MEM    × ×  ×   

 HEM    ×      

 DSM  ×  ×     ×

 PEV    ×    ×  

 
UC × × × ×  ×  ×  

 SGTD    ×      

[42]

[43][44][45][46][47]

[48][49]

[50][51][52]

[53][54]

[41][55][56][57][58][59][60][61][62][63][64][65][66]

[67][68][69]

[70]

Ref. Objectives CCGAM LDR
IPEA
and
MH

HE BD TOA
DD
and
IGDT

MPC
and
FPIM

BB LM QP MCS
LOM
and
BMLM

IM

Minimize
Generation
Cost

 ×   ×           

Minimize
Electricity
Cost

 ×  ×            

Minimize
Social
Benefits Cost

      ×      ×   

Minimize
Microgrid Net
Cost

       ×   ×     

Minimize
Comfort
Violation

         ×      

[53][71]

[72]

[51][49]

[73]

[46][74]

[48]
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2.2.1. Smart Grid Energy Management

One of the most common applications of robust optimization is smart grid energy management. Robust

optimization can be used to model uncertainty in several parameters. To maximize social welfare, the problem is

described as mixed integer linear programming and solved using a consensus algorithm and an optimal control

technique .

2.2.2. Microgrid Energy Management

The energy management system for single and three-phase balance microgrids is designed using robust convex

optimization. The problem is formulated as a mixed integer second-order cone programming . Microgrid energy

management takes into account the characteristics and constraints of the system. The system is mathematically

modeled using mixed-integer nonlinear programming, which is subsequently linearized using the Lyapunov

optimization approach . For microgrid energy management, two-stage adaptive robust optimization is employed

while taking into account the uncertainties of renewable energy resources. In both isolated and grid connected

modes, the problem is formulated as mixed integer linear programming, and the total operating cost of the system

is minimized. The column and constraint creation algorithm efficiently solves the problem . Energy and

frequency management of microgrid accomplishes a reliable and robust solution where total cost of the system is

minimized by solving mixed integer linear programming using information gap decision theory .

Microgrid planning uses two-stage robust optimization to reduce operating and maintenance costs, investment

costs, emissions, and fuel costs. The composition of a microgrid takes into account both renewable energy sources

and dispatchable distributed generation. The key sources of uncertainty are intermittent renewable energy

resources and time-varying load, which can be effectively managed by using robust optimization. The column and

constraint creation approach aids in the solution of the mixed integer linear programming problem . Scenario-

based robust optimization is applied to minimize the microgrid’s social benefit cost by accounting for uncertainty in

Ref. Objectives CCGAM LDR
IPEA
and
MH

HE BD TOA
DD
and
IGDT

MPC
and
FPIM

BB LM QP MCS
LOM
and
BMLM

IM

Minimize
Operation
Cost

×     ×   ×       

Minimize
Overall Cost

× ×    ×     ×  × × ×

Minimize
Electricity
Payment

×           ×    

Maximize
Social
Welfare

     ×        ×  

Maximize
Profits

×               

[45][55]

[58][75]

[41][44]

[47][76]

[77][56]

[57][78]

[63][79]

[52]

[42][59]

[47]

[42]

[43]

[44]

[45]

[46][80]

[47]
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load and renewable energy resources. Taguchi’s orthogonal array generates scenarios, which are then verified

using Monte Carlo simulations . Distributed generation, distributed storage, and distributed economic dispatch

are used to manage energy in the microgrid. The Lagrangian relaxation and dual decomposition method is used to

reduce the net cost of a microgrid .

2.2.3. Unit Commitment

A security constraint unit commitment for the power grid considering the uncertainties in supply and demand is

performed. Total operation cost is minimized, and the solution to the problem is achieved by applying the bender’s

decomposition and column generation methods . The overall cost of the system gets minimized by applying

various algorithms in different domains . Unit commitment problem is solved by Benders’ decomposition

algorithm , column and constraints generation algorithm  and Lagrangian decomposition method .

Integrated electricity and heating system is scheduled by column and constraints generation algorithm .

Multistage robust optimization is applied for unit commitment, considering the uncertainties of wind power and

demand response. The sole objective is to maximize social welfare and to satisfy various constraints. It is being

solved by using bender’s decomposition algorithm to achieve unit commitment in an optimal robust way .

2.2.4. Demand Side Management

The demand side is scheduled using robust optimization, which takes into account the uncertainty in manually

operated appliances. The problem is formulated as quadratic programming , where nonlinear programming is

used in  to minimize the cost of electricity. Commercial building appliances are scheduled in an ideal method to

account for the impact of uncertainties. To minimize the cost of power, the optimization problem is framed as a

mixed integer linear programming problem.

2.2.5. Smart Home

The robust index method is applied to handle the uncertainties of household load scheduling and minimize the

customer discomfort. The problem is mathematically formulated as a mixed integer linear programming which has

been solved by using branch and bound algorithm . The proposed model schedules renewable energy

resources at the production part and controls the smart home consumption part. An optimal solution achieved,

along with the reduction in computational time and electricity cost. Meta-heuristic algorithm is applied to solve the

mixed integer linear programming problem .

2.2.6. Plugin Electric Vehicles

Bidirectional dispatch coordination of plugin electric vehicles in a power grid restrains the generation cost. The

problem is formulated as a mixed integer linear programming and solved by using heuristic approach .

2.3. Applications, Objectives and Solution Algorithms of Distributionally Robust
Optimization

[73]

[74]

[55]

[81][82]

[76][77] [56][57] [58]

[78]

[59]

[50]

[51]

[48]

[49]

[53]
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When considering energy storage, distributed generators, and wind turbines, distributionally robust chance

constrained programming is used for energy management of an islanded microgrid. However, using an analytical

method, the overall generation cost is minimized . The generation frequency is managed appropriately via

quadratic programming, and the generation cost is also curtailed .

The unit commitment problem with uncertainty in wind output power is solved via distributionally robust

optimization. The MILP optimization problem is solved using an analytical method, and conservatism is reduced by

using distribution information. . Distance-based distributionally robust optimization is modeled for a unit

commitment by using Kullback Leibler divergence. This model handles uncertainties of wind power in the form of

an ambiguity set. The problem is arranged as mixed integer non-linear programming and is solved by using bender

decomposition and the iterative method. Computational complexities are handled by decomposition method while

the iterative algorithm guarantees the global conservatism . The unit commitment problem is solved by Benders’

decomposition algorithm .

The authors in  applied distributionally robust optimization to solve energy and reserve dispatch problem. It is

shown that distributionally robust optimization is a suitable technique for reserve dispatch to fill the gap between

stochastic and adjustable robust optimization. Strategic aggregation is offering regulation capacity on behalf of a

group of distributed energy resources. Two stage stochastic optimization and distributionally robust chance

constrained optimization are utilized for handling the uncertainties in day-ahead and hour-ahead schemes,

respectively, . The authors in  applied distributionally robust optimization to solve the power flow problem.

2.4. Applications, Objectives and Solution Algorithms of Chance Constrained
Optimization

Chance constrained optimization can be applied to a smart power system by considering applications with diverse

objectives. Applications and objectives of chance constrained optimization in smart power system are shown

in Table 4 and Table 5, respectively.

Table 4. Application of chance constrained optimization and its problem type.

[71]

[72]

[17][83]

[84]

[79]

[85]

[86] [87]

Ref. Applications LP NLPMIPMILPMINLPMIBLP MISOCP SOCPMIQP

 MEM × ×  × ×  ×   

 HEM    ×      

 DEM    ×  ×  ×  

 SDN  ×   ×     

 DSM  ×        

 PEV         ×

[88][89][90][91][92][93]

[94]

[95][96][97][98][99]

[100][101]

[102][103]

[104]
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Table 5. Objectives of chance constrained optimization and the solution algorithms.

Ref. Applications LP NLPMIPMILPMINLPMIBLP MISOCP SOCPMIQP

 ED ×         

 UC × × × ×   ×  ×

 GEM  ×        

 OPF  ×        

 OPGF  ×        

[105]

[106][107][108][109][110][111][112][113]

[114]

[115]

[116]

Ref. Objectives SAAAM SBMIPMHE
BD
and
DE

HABCPOCDD SA SVM
LR
and
IM

MDPMCSMDPADMM

Minimize
Generation
Cost

× ×               

Constraints
Satisfaction

 ×               

Minimize
Reserve
Cost

      ×       ×   

Minimize
Signal Price

   ×             

Minimize
Electricity
Cost

    ×            

Minimize
Operating
Cost

     × ×  ×        

Minimize
Overall Cost

× ×    ×  ×   ×   ×   

Minimize
Thermal line
losses

 ×               

Minimize
planning cost

         ×       

[71]

[106]

[108]

[107]

[117]

[102]

[92]

[88][91]

[109]

[110]

[89][90]

[95][96]

[98]

[100]

[111]

[113]

[118]

[97]

[101]
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2.4.1. Microgrid Energy Management

Chance constrained optimization for microgrid energy management is used, where uncertainties are considered in

various parameters. Electricity cost of microgrid is minimized by using linear programming while satisfying the

energy balance constraint . In , chance constrained optimization is applied to handle the uncertainties in

power exchange between microgrid and macro-grid where overall cost of the system is minimized by using mixed

integer linear programming. Chance constrained stochastic cone programming is applied to plan microgrid network

and overall system’s cost is minimized. To obtain the solution for the problem, it uses second-order cone

programming (SOCP), bi-linear Benders decomposition method, Jensen’s inequalities, and Pareto-optimal cuts .

Chance constrained optimization is used for the optimal operation of microgrid having uncertainties where the

problem is formulated as a mixed-integer non-linear programming .

2.4.2. Distributed Energy Management

In the distribution system, chance constrained optimization helps in the operation and planning of the energy

storage system. Overall cost of the system is minimized by using mixed integer linear programming . Chance

constrained optimization is used to handle the uncertainties that are due to photo-voltaic and batteries. Line losses

in the distribution system are reduced by formulating the problem as second order cone programming and solved

by analytic method . Overall cost of the system is minimized in distributed energy management problem by

using mixed integer linear programming . In , the authors presented feasibility and profit based planning for

the integration of distributed generation. The problem is mathematically formulated as a mixed integer bi-linear

programming.

2.4.3. Demand Side Management

Uncertainties due to the consumption pattern and variation in consumers response to the price signal are modeled

by chance constrained optimization. The problem is mathematically formulated as non-linear programming to

minimize the electricity price and being solved by interior point method . In , the authors considered

uncertainties due to the interruptable load and consumer response. Penalty to the consumers and variations due to

the interrupt-able load are minimized using non linear programming.

2.4.4. Smart Distribution Network

Ref. Objectives SAAAM SBMIPMHE
BD
and
DE

HABCPOCDD SA SVM
LR
and
IM

MDPMCSMDPADMM

Minimize
Active Power
Losses

        ×    ×    

Maximize
payoff

           ×     

Minimize
Dispatch
cost

               ×

Minimize
Social cost

               ×
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[97][122]

[98] [99]

[102] [103]
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Joint chance constrained optimization handles the high penetration of distributed generator in a distribution

network. The support vectors classifier (SVC) identifies zero probability constraints while sampling is done by

Monte Carlo Simulations. Overall system cost is reduced by using non-linear programming to formulate the

problem . In , the authors minimized planning cost where the problem is being formulated as mixed integer

non linear programming.

2.4.5. Home Energy Management

Chance constrained optimization for home energy management to optimize the operation of appliances is used.

The model to formulate the uncertainties due to electricity prices and fluctuating loads is used. The problem is

mathematically modeled as mixed-integer linear programming and being solved by using particle swarm

optimization and two-point estimation method .

2.4.6. Unit Commitment

The chance constrained two stage stochastic program minimizes the overall generation cost, whereas sample

average approximation helps in solving the mixed integer linear programming problem . Spinning reserve cost

gets minimized in an uncertain controllable load by using chance constrained optimization. The problems are

mathematically formulated as linear programming which are being solved by applying the analytic method and

scenario base analysis in  and in , respectively. Overall system’s cost gets minimized by applying the

ranking algorithm, and the iterative method in unit commitment problem using mixed integer linear programming

. The authors in  applied analytic method to satisfy the constraints in unit commitment problem. Operating

cost is minimized by formulating the unit commitment problems as mixed integer programming and mixed integer

second order cone programming in , respectively. Overall cost of the system is minimized in  using

mixed integer quadratic programming and non-linear programming in .

2.4.7. Economic Dispatch

Economic dispatch problem is formulated as a linear programming problem in . Active power losses are

minimized in thermostatically controllable load, where Spatio temporal and dual decomposition algorithm solve the

problem . The pay-off gets maximized, and the problem is solved by applying linear regression and iterative

method . Dispatch coordination for plug-in electric vehicles are modeled as a mixed integer quadratic

programming .

References

1. Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ,
USA, 2009.

[100] [101]

[94]

[106]

[107] [117]

[98] [108]

[109][110] [111]

[112]

[105]

[119]

[120]

[104]



Probabilistic Optimization Techniques in Smart Power System | Encyclopedia.pub

https://encyclopedia.pub/entry/19568 19/27

2. Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer Science & Business
Media: Berlin/Heidelberg, Germany, 2011.

3. Hedman, K.; Korad, A.; Zhang, M.; Dominguez-Garcia, A.; Jiang, X. The Application of Robust
Optimization in Power Systems; Final Report to the Power Systems Engineering Research
Center; PSERC Publication: Chandigarh, India, 2014; pp. 6–14.

4. Hannah, L.A. Stochastic optimization. Int. Encycl. Soc. Behav. Sci. 2015, 2, 473–481.

5. Goh, J.; Sim, M. Distributionally robust optimization and its tractable approximations. Oper. Res.
2010, 58, 902–917.

6. Shang, C.; You, F. Distributionally robust optimization for planning and scheduling under
uncertainty. Comput. Chem. Eng. 2018, 110, 53–68.

7. Li, C.; Grossmann, I.E. A Review of Stochastic Programming Methods for Optimization of Process
Systems under Uncertainty. Front. Chem. Eng. 2020, 2, 34.

8. Ahmed, H. Formulation of Two-Stage Stochastic Programming with Fixed Recourse. Br. Int. Exact
Sci. (BIoEx) J. 2019, 1, 18–21.

9. Bertsimas, D.; Brown, D.B.; Caramanis, C. Theory and applications of robust optimization. SIAM
Rev. 2011, 53, 464–501.

10. Ben-Tal, A.; Nemirovski, A. Robust optimization–methodology and applications. Math. Program.
2002, 92, 453–480.

11. Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A. Robust Optimization; Princeton University Press:
Princeton, NJ, USA, 2009; Volume 28.

12. Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35–53.

13. Ben-Tal, A.; Goryashko, A.; Guslitzer, E.; Nemirovski, A. Adjustable robust solutions of uncertain
linear programs. Math. Program. 2004, 99, 351–376.

14. Schöbel, A. Generalized light robustness and the trade-off between robustness and nominal
quality. Math. Methods Oper. Res. 2014, 80, 161–191.

15. Kouvelis, P.; Yu, G. Robust Discrete Optimization and Its Applications; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2013; Volume 14.

16. Carrizosa, E.; Goerigk, M.; Schöbel, A. A biobjective approach to recoverable robustness based
on location planning. Eur. J. Oper. Res. 2017, 261, 421–435.

17. Xiong, P.; Jirutitijaroen, P.; Singh, C. A distributionally robust optimization model for unit
commitment considering uncertain wind power generation. IEEE Trans. Power Syst. 2017, 32,
39–49.



Probabilistic Optimization Techniques in Smart Power System | Encyclopedia.pub

https://encyclopedia.pub/entry/19568 20/27

18. Esteban-Pérez, A.; Morales, J.M. Partition-based Distributionally Robust Optimization via Optimal
Transport with Order Cone Constraints. arXiv 2019, arXiv:1903.01769.

19. Xin, L.; Goldberg, D.A. Time (in) consistency of multistage distributionally robust inventory models
with moment constraints. Eur. J. Oper. Res. 2021, 289, 1127–1141.

20. Liu, Q.; Wu, J.; Xiao, X.; Zhang, L. A note on distributionally robust optimization under moment
uncertainty. J. Numer. Math. 2018, 26, 141–150.

21. Esfahani, P.M.; Kuhn, D. Data-driven distributionally robust optimization using the Wasserstein
metric: Performance guarantees and tractable reformulations. Math. Program. 2018, 171, 115–
166.

22. Shafieezadeh-Abadeh, S.; Kuhn, D.; Esfahani, P.M. Regularization via Mass Transportation. J.
Mach. Learn. Res. 2019, 20, 1–68.

23. Namkoong, H.; Duchi, J.C. Stochastic Gradient Methods for Distributionally Robust Optimization
with f-divergences. NIPS 2016, 29, 2208–2216.

24. Bayraksan, G.; Love, D.K. Data-driven stochastic programming using phi-divergences. In The
Operations Research Revolution; INFORMS: Oslo, Norway, 2015; pp. 1–19.

25. Duchi, J.C.; Glynn, P.W.; Namkoong, H. Statistics of robust optimization: A generalized empirical
likelihood approach. Math. Oper. Res. 2021, 46, 835–1234.

26. Xie, W. On distributionally robust chance constrained programs with Wasserstein distance. Math.
Program. 2021, 186, 115–155.

27. Van Ackooij, W.; Zorgati, R.; Henrion, R.; Möller, A. Chance constrained programming and its
applications to energy management. In Stochastic Optimization-Seeing the Optimal for the
Uncertain; IntechOpen: London, UK, 28 February 2011.

28. Gassmann, H.I.; Schweitzer, E. A comprehensive input format for stochastic linear programs. Ann.
Oper. Res. 2001, 104, 89–125.

29. Liu, J.; Rizzoni, G.; Yurkovich, B. Stochastic energy management for microgrids with constraints
under uncertainty. In Proceedings of the 2016 IEEE Transportation Electrification Conference and
Expo (ITEC), Dearborn, MI, USA, 27–29 June 2016; pp. 1–6.

30. Wu, X.; Hu, X.; Yin, X.; Moura, S.J. Stochastic optimal energy management of smart home with
PEV energy storage. IEEE Trans. Smart Grid 2016, 9, 2065–2075.

31. Nikmehr, N.; Najafi-Ravadanegh, S. Probabilistic optimal power dispatch in multi-microgrids using
heuristic algorithms. In Proceedings of the 2014 Smart Grid Conference (SGC), Tehran, Iran, 9–
10 December 2014; pp. 1–6.



Probabilistic Optimization Techniques in Smart Power System | Encyclopedia.pub

https://encyclopedia.pub/entry/19568 21/27

32. Dehghanian, P.; Kezunovic, M. Probabilistic decision making for the bulk power system optimal
topology control. IEEE Trans. Smart Grid 2016, 7, 2071–2081.

33. Kopsidas, K.; Kapetanaki, A.; Levi, V. Optimal demand response scheduling with real-time
thermal ratings of overhead lines for improved network reliability. IEEE Trans. Smart Grid 2016, 8,
2813–2825.

34. Chen, Z.; Wu, L.; Fu, Y. Real-time price-based demand response management for residential
appliances via stochastic optimization and robust optimization. IEEE Trans. Smart Grid 2012, 3,
1822–1831.

35. Hasan, Z.; El-Hawary, M. Load reduction probabilistic model for smart grid network economic
dispatch problem. In Proceedings of the 2017 IEEE Electrical Power and Energy Conference
(EPEC), Saskatoon, SK, Canada, 22–25 October 2017; pp. 1–7.

36. Nikmehr, N.; Ravadanegh, S.N. Optimal power dispatch of multi-microgrids at future smart
distribution grids. IEEE Trans. Smart Grid 2015, 6, 1648–1657.

37. Bakirtzis, E.A.; Simoglou, C.K.; Biskas, P.N.; Bakirtzis, A.G. Storage management by rolling
stochastic unit commitment for high renewable energy penetration. Electr. Power Syst. Res. 2018,
158, 240–249.

38. Wang, Q.; Wang, J.; Guan, Y. Stochastic unit commitment with uncertain demand response. IEEE
Trans. Power Syst. 2012, 28, 562–563.

39. Rostampour, V.; Keviczky, T. Energy management for building climate comfort in uncertain smart
thermal grids with aquifer thermal energy storage. IFAC-PapersOnLine 2017, 50, 13156–13163.

40. Trpovski, A.; Melo, D.F.R.; Hamacher, T.; Massier, T. Stochastic optimization for distribution grid
reconfiguration with high photovoltaic penetration. In Proceedings of the 2017 IEEE International
Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 14–17 August
2017; pp. 67–73.

41. Blanco, I.; Morales, J.M. An efficient robust solution to the two-stage stochastic unit commitment
problem. IEEE Trans. Power Syst. 2017, 32, 4477–4488.

42. Xu, Y.; Yang, Z.; Gu, W.; Li, M.; Deng, Z. Robust real-time distributed optimal control based
energy management in a smart grid. IEEE Trans. Smart Grid 2015, 8, 1568–1579.

43. Giraldo, J.S.; Castrillon, J.A.; López, J.C.; Rider, M.J.; Castro, C.A. Microgrids energy
management using robust convex programming. IEEE Trans. Smart Grid 2018, 10, 4520–4530.

44. Hu, W.; Wang, P.; Gooi, H.B. Toward optimal energy management of microgrids via robust two-
stage optimization. IEEE Trans. Smart Grid 2016, 9, 1161–1174.

45. Guo, Y.; Zhao, C. Islanding-aware robust energy management for microgrids. IEEE Trans. Smart
Grid 2016, 9, 1301–1309.



Probabilistic Optimization Techniques in Smart Power System | Encyclopedia.pub

https://encyclopedia.pub/entry/19568 22/27

46. Rezaei, N.; Ahmadi, A.; Khazali, A.H.; Guerrero, J.M. Energy and frequency hierarchical
management system using information gap decision theory for islanded microgrids. IEEE Trans.
Ind. Electron. 2018, 65, 7921–7932.

47. Wang, Z.; Chen, B.; Wang, J.; Kim, J.; Begovic, M.M. Robust optimization based optimal DG
placement in microgrids. IEEE Trans. Smart Grid 2014, 5, 2173–2182.

48. Wang, C.; Zhou, Y.; Wu, J.; Wang, J.; Zhang, Y.; Wang, D. Robust-index method for household
load scheduling considering uncertainties of customer behavior. IEEE Trans. Smart Grid 2015, 6,
1806–1818.

49. Melhem, F.Y.; Grunder, O.; Hammoudan, Z.; Moubayed, N. Energy management in electrical
smart grid environment using robust optimization algorithm. IEEE Trans. Ind. Appl. 2018, 54,
2714–2726.

50. Zazo, J.; Zazo, S.; Macua, S.V. Robust worst-case analysis of demand-side management in
smart grids. IEEE Trans. Smart Grid 2016, 8, 662–673.

51. Du, Y.F.; Jiang, L.; Li, Y.; Wu, Q. A robust optimization approach for demand side scheduling
considering uncertainty of manually operated appliances. IEEE Trans. Smart Grid 2016, 9, 743–
755.

52. Xiao, J.; Xie, J.; Chen, X.; Yu, K.; Chen, Z.; Li, Z. Energy cost reduction robust optimization for
meeting scheduling in smart commercial buildings. In Proceedings of the 2017 IEEE Conference
on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017;
pp. 1–5.

53. Bai, X.; Qiao, W. Robust optimization for bidirectional dispatch coordination of large-scale V2G.
IEEE Trans. Smart Grid 2015, 6, 1944–1954.

54. Hajebrahimi, A.; Kamwa, I.; Delage, E.; Abdelaziz, M. Adaptive Distributionally Robust
Optimization for Electricity and Electrified Transportation Planning. IEEE Trans. Smart Grid 2020,
11, 4278–4289.

55. Ye, H.; Li, Z. Robust security-constrained unit commitment and dispatch with recourse cost
requirement. IEEE Trans. Power Syst. 2015, 31, 3527–3536.

56. Wang, C.; Liu, F.; Wang, J.; Qiu, F.; Wei, W.; Mei, S.; Lei, S. Robust risk-constrained unit
commitment with large-scale wind generation: An adjustable uncertainty set approach. IEEE
Trans. Power Syst. 2016, 32, 723–733.

57. Velloso, A.; Street, A.; Pozo, D.; Arroyo, J.M.; Cobos, N.G. Two-Stage Robust Unit Commitment
for Co-Optimized Electricity Markets: An Adaptive Data-Driven Approach for Scenario-Based
Uncertainty Sets. IEEE Trans. Sustain. Energy 2019, 11, 958–969.



Probabilistic Optimization Techniques in Smart Power System | Encyclopedia.pub

https://encyclopedia.pub/entry/19568 23/27

58. Li, Z.; Shahidehpour, M.; Wu, W.; Zeng, B.; Zhang, B.; Zheng, W. Decentralized multiarea robust
generation unit and tie-line scheduling under wind power uncertainty. IEEE Trans. Sustain.
Energy 2015, 6, 1377–1388.

59. Zhao, C.; Wang, J.; Watson, J.P.; Guan, Y. Multi-stage robust unit commitment considering wind
and demand response uncertainties. IEEE Trans. Power Syst. 2013, 28, 2708–2717.

60. Lorca, A.; Sun, X.A. Multistage robust unit commitment with dynamic uncertainty sets and energy
storage. IEEE Trans. Power Syst. 2016, 32, 1678–1688.

61. Gupta, A.; Anderson, C.L. Statistical bus ranking for flexible robust unit commitment. IEEE Trans.
Power Syst. 2018, 34, 236–245.

62. Bertsimas, D.; Litvinov, E.; Sun, X.A.; Zhao, J.; Zheng, T. Adaptive robust optimization for the
security constrained unit commitment problem. IEEE Trans. Power Syst. 2012, 28, 52–63.

63. Mahboubi-Moghaddam, E.; Nayeripour, M.; Aghaei, J.; Khodaei, A.; Waffenschmidt, E. Interactive
robust model for energy service providers integrating demand response programs in wholesale
markets. IEEE Trans. Smart Grid 2016, 9, 2681–2690.

64. Jiang, R.; Wang, J.; Guan, Y. Robust unit commitment with wind power and pumped storage
hydro. IEEE Trans. Power Syst. 2011, 27, 800–810.

65. Morales-Espana, G.; Lorca, Á.; de Weerdt, M.M. Robust unit commitment with dispatchable wind
power. Electr. Power Syst. Res. 2018, 155, 58–66.

66. Chen, Y.; Liu, F.; Wei, W.; Mei, S.; Chang, N. Robust unit commitment for large-scale wind
generation and run-off-river hydropower. CSEE J. Power Energy Syst. 2016, 2, 66–75.

67. Cho, Y.; Ishizaki, T.; Ramdani, N.; Imura, J.i. Box-based Temporal Decomposition of Multi-period
Economic Dispatch for Two-stage Robust Unit Commitment. IEEE Trans. Power Syst. 2019, 34,
3109–3118.

68. Jiang, R.; Wang, J.; Zhang, M.; Guan, Y. Two-stage minimax regret robust unit commitment. IEEE
Trans. Power Syst. 2013, 28, 2271–2282.

69. Lee, C.; Liu, C.; Mehrotra, S.; Shahidehpour, M. Modeling transmission line constraints in two-
stage robust unit commitment problem. IEEE Trans. Power Syst. 2013, 29, 1221–1231.

70. Carroll, P. Exploring Smart Grid Time-of-Use Tariffs using a Robust Optimisation Framework. In
Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow,
UK, 19–24 July 2020; pp. 1–6.

71. Shi, Z.; Liang, H.; Huang, S.; Dinavahi, V. Distributionally robust chance-constrained energy
management for islanded microgrids. IEEE Trans. Smart Grid 2018, 10, 2234–2244.



Probabilistic Optimization Techniques in Smart Power System | Encyclopedia.pub

https://encyclopedia.pub/entry/19568 24/27

72. Sasaki, Y.; Yorino, N.; Zoka, Y.; Wahyudi, F.I. Robust stochastic dynamic load dispatch against
uncertainties. IEEE Trans. Smart Grid 2017, 9, 5535–5542.

73. Xiang, Y.; Liu, J.; Liu, Y. Robust energy management of microgrid with uncertain renewable
generation and load. IEEE Trans. Smart Grid 2015, 7, 1034–1043.

74. Zhang, Y.; Gatsis, N.; Giannakis, G.B. Robust energy management for microgrids with high-
penetration renewables. IEEE Trans. Sustain. Energy 2013, 4, 944–953.

75. Valencia, F.; Collado, J.; Sáez, D.; Marín, L.G. Robust energy management system for a
microgrid based on a fuzzy prediction interval model. IEEE Trans. Smart Grid 2015, 7, 1486–
1494.

76. Gögler, P.; Dorfner, M.; Hamacher, T. Hybrid Robust/Stochastic Unit Commitment With Iterative
Partitions of the Continuous Uncertainty Set. Front. Energy Res. 2018, 6, 71.

77. Zhao, C.; Guan, Y. Unified stochastic and robust unit commitment. IEEE Trans. Power Syst. 2013,
28, 3353–3361.

78. Zhou, H.; Li, Z.; Zheng, J.; Wu, Q.; Zhang, H. Robust Scheduling of Integrated Electricity and
Heating System Hedging Heating Network Uncertainties. IEEE Trans. Smart Grid 2019, 11,
1543–1555.

79. Zhao, C.; Jiang, R. Distributionally robust contingency-constrained unit commitment. IEEE Trans.
Power Syst. 2017, 33, 94–102.

80. Ullah, H.; Khan, M.; Hussain, I.; Ullah, I.; Uthansakul, P.; Khan, N. An Optimal Energy
Management System for University Campus Using the Hybrid Firefly Lion Algorithm (FLA).
Energies 2021, 14, 6028.

81. Ullah, I.; Hussain, I.; Uthansakul, P.; Riaz, M.; Khan, M.N.; Lloret, J. Exploiting multi-verse
optimization and sine-cosine algorithms for energy management in smart cities. Appl. Sci. 2020,
10, 2095.

82. Ullah, I.; Hussain, I.; Singh, M. Exploiting Grasshopper and Cuckoo Search Bio-Inspired
Optimization Algorithms for Industrial Energy Management System: Smart Industries. Electronics
2020, 9, 105.

83. Prabakaran, S.; Ramar, R.; Hussain, I.; Kavin, B.P.; Alshamrani, S.S.; AlGhamdi, A.S.; Alshehri, A.
Predicting Attack Pattern via Machine Learning by Exploiting Stateful Firewall as Virtual Network
Function in an SDN Network. Sensors 2022, 22, 709.

84. Chen, Y.; Guo, Q.; Sun, H.; Li, Z.; Wu, W.; Li, Z. A distributionally robust optimization model for
unit commitment based on Kullback–Leibler divergence. IEEE Trans. Power Syst. 2018, 33,
5147–5160.



Probabilistic Optimization Techniques in Smart Power System | Encyclopedia.pub

https://encyclopedia.pub/entry/19568 25/27

85. Wei, W.; Liu, F.; Mei, S. Distributionally robust co-optimization of energy and reserve dispatch.
IEEE Trans. Sustain. Energy 2015, 7, 289–300.

86. Zhang, H.; Hu, Z.; Munsing, E.; Moura, S.J.; Song, Y. Data-driven chance-constrained regulation
capacity offering for distributed energy resources. IEEE Trans. Smart Grid 2018, 10, 2713–2725.

87. Jabr, R.A. Distributionally robust CVaR constraints for power flow optimization. IEEE Trans.
Power Syst. 2020, 35, 3764–3773.

88. Liu, J.; Chen, H.; Zhang, W.; Yurkovich, B.; Rizzoni, G. Energy management problems under
uncertainties for grid-connected microgrids: A chance constrained programming approach. IEEE
Trans. Smart Grid 2016, 8, 2585–2596.

89. Zachar, M.; Daoutidis, P. Microgrid/macrogrid energy exchange: A novel market structure and
stochastic scheduling. IEEE Trans. Smart Grid 2016, 8, 178–189.

90. Cao, X.; Wang, J.; Zeng, B. Networked Microgrids Planning Through Chance Constrained
Stochastic Conic Programming. IEEE Trans. Smart Grid 2019, 10, 6619–6628.

91. Yang, Z.; Wu, R.; Yang, J.; Long, K.; You, P. Economical operation of microgrid with various
devices via distributed optimization. IEEE Trans. Smart Grid 2015, 7, 857–867.

92. Zare, M.; Niknam, T.; Azizipanah-Abarghooee, R.; Ostadi, A. New stochastic bi-objective optimal
cost and chance of operation management approach for smart microgrid. IEEE Trans. Ind. Inform.
2016, 12, 2031–2040.

93. Daneshvar, M.; Ivatloo, B.M.; Abapour, M.; Asadi, S.; Khanjani, R. Distributionally Robust Chance
Constrained Transactive Energy Framework for Coupled Electrical and Gas Microgrids. IEEE
Trans. Ind. Electron. 2020, 68, 347–357.

94. Huang, Y.; Wang, L.; Guo, W.; Kang, Q.; Wu, Q. Chance constrained optimization in a home
energy management system. IEEE Trans. Smart Grid 2016, 9, 252–260.

95. Akhavan-Hejazi, H.; Mohsenian-Rad, H. Energy storage planning in active distribution grids: A
chance-constrained optimization with non-parametric probability functions. IEEE Trans. Smart
Grid 2016, 9, 1972–1985.

96. Cai, Y.; Huang, G.; Yang, Z.; Lin, Q.; Tan, Q. Community-scale renewable energy systems
planning under uncertainty. An interval chance-constrained programming approach. Renew.
Sustain. Energy Rev. 2009, 13, 721–735.

97. Ayyagari, K.S.; Gatsis, N.; Taha, A.F. Chance constrained optimization of distributed energy
resources via affine policies. In Proceedings of the 2017 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 1050–
1054.



Probabilistic Optimization Techniques in Smart Power System | Encyclopedia.pub

https://encyclopedia.pub/entry/19568 26/27

98. Zhao, C.; Wang, Q.; Wang, J.; Guan, Y. Expected value and chance constrained stochastic unit
commitment ensuring wind power utilization. IEEE Trans. Power Syst. 2014, 29, 2696–2705.

99. Cao, X.; Wang, J.; Zeng, B. Distributed Generation Planning Guidance Through Feasibility and
Profit Analysis. IEEE Trans. Smart Grid 2018, 9, 5473–5475.

100. Baker, K.; Bernstein, A. Joint Chance Constraints in AC Optimal Power Flow: Improving Bounds
through Learning. IEEE Trans. Smart Grid 2019, 10, 6376–6385.

101. Arasteh, H.; Vahidinasab, V.; Sepasian, M.S.; Aghaei, J. Stochastic System of Systems
Architecture for Adaptive Expansion of Smart Distribution Grids. IEEE Trans. Ind. Inform. 2018,
15, 377–389.

102. Dorini, G.; Pinson, P.; Madsen, H. Chance-constrained optimization of demand response to price
signals. IEEE Trans. Smart Grid 2013, 4, 2072–2080.

103. Niu, W.; Li, Y. Uncertain optimization decision of interruptible load in demand response program.
In Proceedings of the 2014 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), Kuala
Lumpur, Malaysia, 20–23 May 2014; pp. 675–679.

104. Li, R.; Wu, Q.; Oren, S.S. Distribution locational marginal pricing for optimal electric vehicle
charging management. IEEE Trans. Power Syst. 2013, 29, 203–211.

105. Wang, Z.; Shen, C.; Liu, F.; Wu, X.; Liu, C.C.; Gao, F. Chance-constrained economic dispatch with
non-Gaussian correlated wind power uncertainty. IEEE Trans. Power Syst. 2017, 32, 4880–4893.

106. Wang, Q.; Guan, Y.; Wang, J. A chance-constrained two-stage stochastic program for unit
commitment with uncertain wind power output. IEEE Trans. Power Syst. 2011, 27, 206–215.

107. Li, B.; Vrakopoulou, M.; Mathieu, J.L. Chance constrained reserve scheduling using uncertain
controllable loads Part II: Analytical reformulation. IEEE Trans. Smart Grid 2017, 10, 1618–1625.

108. Peralta, J.; Pérez-Ruiz, J.; De la Torre, S. Unit commitment with load uncertainty by joint chance-
constrained programming. In Proceedings of the 2013 IEEE Grenoble Conference, Grenoble,
France, 16–20 June 2013; pp. 1–6.

109. Zhang, Y.; Wang, J.; Zeng, B.; Hu, Z. Chance-constrained two-stage unit commitment under
uncertain load and wind power output using bilinear benders decomposition. IEEE Trans. Power
Syst. 2017, 32, 3637–3647.

110. Sundar, K.; Nagarajan, H.; Roald, L.; Misra, S.; Bent, R.; Bienstock, D. Chance-Constrained Unit
Commitment with N-1 Security and Wind Uncertainty. IEEE Trans. Control. Netw. Syst. 2019, 6,
1062–1074.

111. Li, Z.; Jin, T.; Zhao, S.; Liu, J. Power system day-ahead unit commitment based on chance-
constrained dependent chance goal programming. Energies 2018, 11, 1718.



Probabilistic Optimization Techniques in Smart Power System | Encyclopedia.pub

https://encyclopedia.pub/entry/19568 27/27

112. Chen, D.; Hou, S.; Gong, N.; Zhang, W.; Li, H. A Chance-Constrained Two-Stage Stochastic UC
Considering Uncertain Renewable Energy Output Furthermore, Demand Response. In
Proceedings of the 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Singapore,
22–25 May 2018; pp. 419–424.

113. Pozo, D.; Contreras, J. A chance-constrained unit commitment with an nK security criterion and
significant wind generation. IEEE Trans. Power Syst. 2012, 28, 2842–2851.

114. Wang, B.; Dehghanian, P.; Zhao, D. Chance-constrained energy management system for power
grids with high proliferation of renewables and electric vehicles. IEEE Trans. Smart Grid 2019, 11,
2324–2336.

115. Tang, K.; Dong, S.; Ma, X.; Lv, L.; Song, Y. Chance-Constrained Optimal Power Flow of Integrated
Transmission and Distribution Networks with Limited Information Interaction. IEEE Trans. Smart
Grid 2020, 12, 821–833.

116. Yang, L.; Xu, Y.; Gu, W.; Sun, H. Distributionally Robust Chance-constrained Optimal Power-Gas
Flow under Bidirectional Interactions Considering Uncertain Wind Power. IEEE Trans. Smart Grid
2020, 12, 1722–1735.

117. Vrakopoulou, M.; Li, B.; Mathieu, J.L. Chance constrained reserve scheduling using uncertain
controllable loads Part I: Formulation and scenario-based analysis. IEEE Trans. Smart Grid 2017,
10, 1608–1617.

118. Soltani, N.Y.; Nasiri, A. Chance-constrained Optimization of Energy Storage Capacity for
Microgrids. IEEE Trans. Smart Grid 2020, 11, 2760–2770.

119. Hassan, A.; Mieth, R.; Chertkov, M.; Deka, D.; Dvorkin, Y. Optimal load ensemble control in
chance-constrained optimal power flow. IEEE Trans. Smart Grid 2018, 10, 5186–5195.

120. Li, B.; Wang, X.; Shahidehpour, M.; Jiang, C.; Li, Z. DER Aggregators Data-Driven Bidding
Strategy Using the Information Gap Decision Theory in a Non-Cooperative Electricity Market.
IEEE Trans. Smart Grid 2019, 10, 6756–6767.

121. Guo, Z.; Pinson, P.; Chen, S.; Yang, Q.; Yang, Z. Chance-Constrained Peer-to-Peer Joint Energy
and Reserve Market Considering Renewable Generation Uncertainty. IEEE Trans. Smart Grid
2020, 12, 798–809.

122. Hussain, I.; Khan, F.; Ahmad, I.; Khan, S.; Saeed, M. Power loss reduction via distributed
generation system injected in a radial feeder. Mehran Univ. Res. J. Eng. Technol. 2021, 40, 160–
168.

Retrieved from https://encyclopedia.pub/entry/history/show/46650


