

Leukemia Cutis

Subjects: **Hematology**

Contributor: Ewa Robak , Marcin Braun , Tadeusz Robak

Leukemia cutis (LC) is defined as the leukemic infiltration of the epidermis, the dermis, and the subcutaneous tissue. Leukemia cutis may follow or occur simultaneously with the diagnosis of systemic leukemia. However, cutaneous lesions are occasionally diagnosed as the primary manifestation of leukemia. Leukemic skin infiltrations demonstrate considerable variation regarding a number of changes, distribution, and morphology. The highest incidence of LC is observed in chronic lymphocytic leukemia, monocytic and myelomonocytic acute myeloid leukemia, and T-cell lineage leukemia. Leukemic skin lesions may be localized or disseminated and may occur alone or in combination on any site of the skin, most frequently in the trunk and extremities. The most common clinical presentations of leukemia cutis are papules, nodules, macules, plaques, and ulcers. In most patients, the complete or partial resolution of cutaneous infiltrations occurs simultaneously with hematologic remission.

However, in patients with resistant disease or recurrent skin infiltration, local radiotherapy can be used.

cutis

diagnosis

pathogenesis

leukemia cutis

1. Introduction

Leukemia cutis (LC) is manifested as clinically demonstrated skin infiltration via neoplastic leukocytes or their precursors into the epidermis, dermis, or subcutaneous tissue [1][2][3][4]. It is a relatively rare symptom observed usually in more advanced stages of the disease. The frequency of LC varies from 2% to 30%, depending on the diagnosis of primary leukemia [2][5][6][7][8]. Leukemia cutis may follow or occur simultaneously with the diagnosis of systemic leukemia. However, LC is occasionally diagnosed as the primary manifestation of leukemia. All subtypes of leukemia can infiltrate the skin. However, LC is most commonly observed in children with congenital leukemia, ranging from 25% to 30% of cases [9]. Generally, the highest incidence of LC has been noted in acute myeloid leukemia (AML) of, monocytic and myelomonocytic FAB (French, American, British) subtypes, chronic lymphocytic leukemia (CLL), chronic lymphocytic leukemia (CLL), and the T-cell leukemias [6][10][11]. Leukemia cutis frequently indicates an advanced disease with additional sites of extramedullary involvement, which is strongly associated with poor prognosis. Larger studies of leukemia cutis are presented in **Table 1**.

Table 1. Selected large studies of leukemia cutis.

Authors/Reference	No. of Patients						Clinical Characteristics	Time from Leukemia Diagnosis to LC Development	Survival from LC Diagnosis
	Total	AML	ALL	CML	CLL	Other			
Su et al., 1984 [1]	42	20	3	3	16	0	Multiple papules and nodules (60%), infiltrative plaques (26%), macules, nodules, ulcers	LC after systemic leukemia—23 mo. (55%), before—3 mo. (7%), concomitant 16 mo. (38%)	10–60 mo. (range)
Yook et al., 2022 [3]	56	40	8	3	2	MDS-3	Plaques (28%), papules (27%), patches (18%), nodules (16%)	12.3 mo. (mean)	5.4 mo. (mean)
Kaddu et al., 1999 [12]	26	17	0	9	0	0	Solitary or multiple reddish to violaceous papules, plaques, and nodules (17 pts.) generalized erythematous maculopapular eruption (9 pts.)	0 to 13 mo. in AML pts. (range), 36–72 months (mean of 52.4 mo.) in CML pts.	AML 1–25 mo. (range), CML 3–17 mo. (range)
Chang et al., 2021 [5]	42	24	3	1	1	MDS-8, ALL-5	Papules (38%), nodules (29%), plaques (16%), ulcers (10%)	16.3 mo. (mean)	7.2 mo. (median)
Kang et al., 2013 [13]	75	49	18	7	0	MDS-1	Nodules (33%), papules (30%), and plaques (17%)	16.2 mo. (mean) in 58 pts. after systemic leukemia diagnosis, 2.3 mo. (mean) in 4 pts. LC before systemic leukemia diagnosis, 13 pts. concurrent diagnosis with	8.3 mo. (median)

Authors/Reference	No. of Patients						Clinical Characteristics	Time from Leukemia Diagnosis to LC Development	Survival from LC Diagnosis
	Total	AML	ALL	CML	CLL	Other			
Martinez-Leborans et al., 2016 [14]	17	12	0	4	1	0	Nodules (7 pts.), papules (5 pts.), erythematous-violaceous plaques (4 pts.)	systemic leukemia aleukemic LC —5 pts.	[7][8] However, diagnosis in cutaneous 1. exposure
[17] Li et al., 2018 [15]	10	9	0	0	0	CMMI-1	Generalized papules or nodules (5 pts.), localized masses (5 pts.)	4–72 mo. in 7 pts. after systemic leukemia diagnosis	7 pts. [2] died during the first year 6 pts. died within 2–12 mo.
Watson et al., 2006 [16]	8	5	0	2	1	0	Erythematous papules (75%), nodules and plaques	2–114 mo. (range); 2 pts. at presentation	14 mo. (median) and 37–39 mo. (range)

skin-selective homing processes [7][18][19][20]. In addition, important roles may be played by chemokine receptors and adhesion molecules. For example, the cutaneous leucocyte-associated antigen (CLA) receptor and CC chemokine receptor 4 (CCR4) on the leukemic cells may interact with E-selectin and/or TARC (thymus- and Abbreviations: ALL—acute lymphoblastic leukemia, AML—acute myeloid leukemia, ATLL—adult T-cell leukemia—activation-regulated chemokine/CCL17 (CC chemokine ligand 17) on the dermal post-capillary venules. This lymphoma, CLL—chronic lymphocytic leukemia, CML—chronic myeloid leukemia, CMML—chronic process may stimulate the movement and binding of leukemic cells into the dermis; in addition, such migration of myelomonocytic leukemia, Hb—hemoglobin, LC—leukemia cutis, MDS—myelodysplastic syndrome, mo.—month, leukemic cells into the dermis may also be stimulated via the interaction between integrins and endothelial-bound pts.—patients.

chemokines. Some observations indicate that the infiltration of leukemic cells is more likely to occur in places with previous skin infections or inflammation [21].

3. Diagnosis

A diagnosis of LC requires an evaluation of clinical features, morphology, histopathology, and immunophenotyping [7][8][21]. While LC is most commonly characterized as nodules, plaques, ulcers, vesicles, and swellings [2][13][18][19], unusual clinical manifestations are occasionally observed, including erosions, ulcerations, and desquamation [2][22][23]. Moreover, leukemic vasculitis has also been noted as an unusual manifestation of LC, while it occurs mostly in patients with acute leukemia with myelomonocytic or monocytic features [14][22][24]. Skin changes are mainly located in the trunk, extremities, and face [13][19][21]. Widespread petechiae-like eruptions secondary to LC have also been rarely described [25]. Although skin lesions are usually generalized, some solitary, clustered, or dispersed lesions have also been observed [2]. In rare cases, the distributions of LC can include sites of herpetic lesions, intravenous catheters, lips, trauma, and recent surgeries [7][26][27].

Some authors indicate that generalized LC occurs mainly in acute leukemias, and single lesions are observed mainly in less aggressive hematologic malignancies [2]. However, most studies have found no correlation between the location and distribution of skin leukemic infiltration with regard to the specific type of disease [15][28]. Leukemic lesions can be violaceous or brick-red to skin colored. Leukemia cutis may also exist as diffuse purpura, particularly in infants, such as blueberry muffin syndrome. In most patients, the skin lesions are asymptomatic, but occasionally, pain or pruritus may be present [5][29]. The development of LC is more likely to be rapid in acute leukemias but more gradual in chronic leukemias [30]. The appearance of the skin lesions in LC is nonspecific, which makes it difficult to clinically differentiate from other skin lesions [13][31][32].

The diagnosis of LC requires the evaluation of biopsy specimens with immunohistochemical staining, with the diagnosis confirmed by determining the expression of characteristic cell surface markers [33]. Immunohistochemical staining remains essential for distinguishing reactive from neoplastic infiltrates, as LC can clinically mimic the reactive lesions. Skin biopsy shows nodular or diffuse infiltrations with leukemic cells in the dermis and/or subcutaneous tissue. In most cases, the leukemic infiltrations do not involve the epidermis and upper dermis, known as the “grenz zone”. However, in T-cell leukemias, epidermotropism is a common event.

The differential diagnosis of LC includes neoplastic, inflammatory, and infectious skin lesions [34][35]. Cutaneous paraneoplastic disorders are defined as one group of nonleukemic cutaneous leukemias that comprise the cutaneous paraneoplastic disorders. Such skin changes have been noted in more than 40% of leukemia patients and are more common than LC. The condition manifests as petechiae/purpura caused by thrombocytopenia, neutrophilic dermatoses such as pyoderma gangrenosum and Sweet's syndrome, as well as leukocytoclastic vasculitis [5][36]. Other studies have also reported the occurrence of opportunistic infections, including disseminated candidiasis and herpes zoster. Any erythematous bright-red or red-brown plaques in LC should be differentiated with erythema exudativum multiforme, panniculitis, or mycosis fungoides [2][7]. Infiltrated erythema and flat nodules should be distinguished from erythema nodosum. Hemorrhagic or purpuric nodules and plaques on the trunk or the lower legs should be differentiated with vasculitis allergica and Kaposi sarcoma. Macular or maculopapular exanthems may resemble pityriasis rosea, viral exanthems, or drug eruptions.

4. Prognosis

In patients with LC, prognosis depends on the leukemia type and advancement of the disease. As LC coexists with systemic leukemic involvement, the prognosis is rather poor, especially in patients with other extramedullary infiltrations and in cases when LC is diagnosed with advanced leukemia, resistant to previous therapies. A worse prognosis is also observed in AML, T-cell prolymphocytic leukemia (T-PLL), and Richter's syndrome (RS) [6][37][38][39]. In a recent study, the median survival time of patients with LC was 7.2 months, with no statistically significant difference between different types of leukemia [5][13]. In another study by Yook et al., 93% of patients died within 10 months after diagnosis [3]. Similar results were reported by Su et al., where 88% of patients with LC died within one year from diagnosis of LC in acute lymphoblastic leukemia (ALL), AML, CLL, and other leukemias [1].

5. Treatment

Leukemia cutis is a local manifestation of an underlying systemic disease and should be treated with systemic therapy appropriate to the specific subtype of leukemia. In most patients, hematologic remission occurs simultaneously with complete or partial response of cutaneous infiltrations. However, in patients with resistant LC or recurrent skin infiltration, local radiotherapy can be used [34][40]. Recently, simultaneous integrated boost with helical arc radiotherapy of total skin (HEARTS) has been proposed to treat cutaneous manifestations in the treatment of refractory cutaneous leukemia [41].

References

1. Su, W.D.; Buechner, S.; Li, C.-Y. Clinicopathologic correlations in leukemia cutis. *J. Am. Acad. Dermatol.* 1984, 11, 121–128.
2. Wagner, G.; Fenchel, K.; Back, W.; Schulz, A.; Sachse, M.M. Leukemia cutis—Epidemiology, clinical presentation, and differential diagnoses. *J. Dtsch. Dermatol. Ges.* 2012, 10, 27–36.
3. Yook, H.J.; Son, J.H.; Kim, Y.H.; Han, J.H.; Lee, J.H.; Park, Y.M.; Chung, N.G.; Kim, H.J.; Bang, C.H. Leukaemia Cutis: Clinical Features and Outcomes of 56 Patients. *Acta Derm. Venereol.* 2022, 102, adv00647.
4. Jang, K.A.; Chi, D.H.; Choi, J.H.; Sung, K.J.; Moon, K.C.; Koh, J.K. Leukemia cutis:a clinicopathologic study of 23 patients. *Korean J. Dermatol.* 2000, 38, 15–22.
5. Chang, Y.W.; Lee, C.H.; Tseng, H.C. Leukemia cutis in a medical center in southern Taiwan: A retrospective study of 42 patients. *J. Formos. Med. Assoc.* 2021, 120 Pt 1, 226–233.
6. Ratnam, K.V.; Khor, C.J.; Su, W.P. Leukemia cutis. *Dermatol. Clin.* 1994, 12, 419–431.
7. Cho-Vega, J.H.; Medeiros, L.J.; Prieto, V.G.; Vega, F. Leukemia cutis. *Am. J. Clin. Pathol.* 2008, 129, 130–142.
8. Parsi, M.; Go, M.S.; Ahmed, A. Leukemia Cutis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: <https://www.ncbi.nlm.nih.gov/books/NBK541136/> (accessed on 16 February 2023).
9. Zhang, I.H.; Zane, L.T.; Braun, B.S.; Maize, J., Jr.; Zoger, S.; Loh, M.L. Congenital leukemia cutis with subsequent development of leukemia. *J. Am. Acad. Dermatol.* 2006, 54 (Suppl. S2), S22–S27.
10. Monopoux, F.; Lacour, J.P.; Hatchuel, Y.; Hofman, P.; Raynaud, S.; Sudaka, I.; Ortonne, J.P.; Mariani, R. Congenital leukemia cutis preceeding monoblastic leukaemia by 3 months. *Pediatr. Dermatol.* 1996, 13, 472–476.

11. Resnik, K.S.; Brod, B.B. Leukemia cutis in congenital leukemia: Analysis and review of the world literature with report of an additional case. *Arch. Dermatol.* 1993, 129, 1301–1306.
12. Kaddu, S.; Zenahlik, P.; Beham-Schmid, C.; Kerl, H.; Cerroni, L. Specific cutaneous infiltrates in patients with myelogenous leukemia: A clinicopathologic study of 26 patients with assessment of diagnostic criteria. *J. Am. Acad. Dermatol.* 1999, 40 Pt 1, 966–978.
13. Kang, Y.S.; Kim, H.S.; Park, H.J.; Lee, J.Y.; Kim, H.O.; Cho, B.K.; Park, Y.M. Clinical characteristics of 75 patients with leukemia cutis. *J. Korean Med. Sci.* 2013, 28, 614–619.
14. Martinez-Leborans, L.; Victoria-Martinez, A.M.; Torregrosa-Calatayud, J.L.; Alegre de Miquel, V. Leukemia cutis: A report of 17 cases and a review of the literature. *Actas Dermosifiliogr.* 2016, 107, e65e69.
15. Li, L.; Wang, Y.; Lian, C.G.; Hu, N.; Jin, H.; Liu, Y. Clinical and pathological features of myeloid leukemia cutis. *An. Bras. Dermatol.* 2018, 93, 216–221.
16. Watson, K.M.; Mufti, G.; Salisbury, J.R.; du Vivier, A.W.; Creamer, D. Spectrum of clinical presentation, treatment and prognosis in a series of eight patients with leukaemia cutis. *Clin. Exp. Dermatol.* 2006, 31, 218–221.
17. Osmola, M.; Gierej, B.; Kłosowicz, A.; Waszczuk-Gajda, A.; Basak, G.W.; Jędrzejczak, W.W.; Jurczyszyn, A.; Ziarkiewicz-Wróblewska, B. Leukaemia cutis for clinicians, a literature review. *Postepy Dermatol. Alergol.* 2021, 38, 359–365.
18. Li, A.W.; Yin, E.S.; Stahl, M.; Kim, T.K.; Panse, G.; Zeidan, A.M.; Leventhal, J.S. The skin as a window to the blood: Cutaneous manifestations of myeloid malignancies. *Blood Rev.* 2017, 31, 370–388.
19. Bakst, R.; Powers, A.; Yahalom, J. Diagnostic and therapeutic considerations for extramedullary leukemia. *Curr. Oncol. Rep.* 2020, 22, 75.
20. Tomasini, C.; Quaglino, P.; Novelli, M.; Fierro, M.T. “Aleukemic” granulomatous leukemia cutis. *Am. J. Dermatopathol.* 1998, 20, 417–421.
21. Haidari, W.; Strowd, L.C. Clinical characterization of leukemia cutis presentation. *Cutis* 2019, 104, 326–330.
22. Seckin, D.; Senol, A.; Gurbuz, O.; Demirkesen, C. Leukemic vasculitis: An unusual manifestation of leukemia cutis. *J. Am. Acad. Dermatol.* 2009, 61, 519–521.
23. Mansoori, P.; Taheri, A.; O'Neill, S.S.; Sangueza, O.P. T-lymphoblastic leukemia/lymphoma with annular skin rash and epidermotropism. *Am. J. Dermatopathol.* 2018, 40, 676–678.
24. Cañuelo, J.; Meseguer-Yebra, C.; Román-Curto, C.; Santos-Briz, A.; Fernández-López, E.; Fraile, C.; Unamuno, P. Leukemic vasculitis: A rare pattern of leukemia cutis. *J. Cutan. Pathol.* 2011, 38, 360–364.

25. Nohria, A.; Criscito, M.C.; Weston, G.K.; Kim, R.H.; Lo Sicco, K.I.; Femia, A.N.; Hejazi, E.Z.; Milam, E.C. Profound leukemia cutis in a patient with relapsed T-cell acute lymphoblastic leukemia. *JAAD Case Rep.* 2021, 18, 51–53.

26. Lee, J.I.; Park, H.J.; Oh, S.T.; Lee, J.Y.; Cho, B.K. A case of leukemia cutis at the site of a prior catheter insertion. *Ann. Dermatol.* 2009, 21, 193–196.

27. Obi, C.; Holler, P.; Pugliese, D.; Abraham, R.; Xu, X.; Sobanko, J.; Rosenbach, M.; Wanat, K.A. Leukemia labialis: A rare presentation of leukemia cutis limited to the lips. *J. Am. Acad. Dermatol.* 2012, 67, e146–e147.

28. Grunwald, M.R.; McDonnell, M.H.; Induru, R.; Gerber, J.M. Cutaneous manifestations in leukemia patients. *Semin. Oncol.* 2016, 43, 359–365.

29. Fadilah, S.A.; Alawiyah, A.A.; Amir, M.A.; Cheong, S.K. Leukaemia cutis presenting as leonine facies. *Med. J. Malays.* 2003, 58, 102–104.

30. Souza, P.K.; Amorim, R.O.; Sousa, L.S.; Batista, M.D. Dermatological manifestations of hematologic neoplasms. Part I: Secondary specific skin lesions. *An. Bras. Dermatol.* 2023, 98, 5–12.

31. Wang, S.-M.; Park, S.-S.; Park, S.-H.; Kim, N.-Y.; Kang, D.W.; Na, H.-R.; Lee, J.W.; Han, S.; Lim, H.K. Pre-transplant depression decreased overall survival of patients receiving allogeneic hematopoietic stem cell transplantation: A nationwide cohort study. *Sci. Rep.* 2020, 10, 15265.

32. Massoud, C.M.; Trivedi, L.; Kappius, R.; Maize JCSr Elston, D.M.; Metcalf, J.S. Varicella zoster virus presenting as lower extremity ulcers and an atypical myeloid infiltrate. *JAAD Case Rep.* 2020, 7, 68–70.

33. Patel, L.M.; Maghari, A.; Schwartz, R.A.; Kapila, R.; Morgan, A.J.; Lambert, W.C. Myeloid leukemia cutis in the setting of myelodysplastic syndrome: A crucial dermatological diagnosis. *Int. J. Dermatol.* 2012, 51, 383–388.

34. Zweegman, S.; Vermeer, M.H.; Bekkink, M.W.; van der Valk, P.; Nanayakkara, P.; Ossenkoppele, G.J. Leukaemia cutis: Clinical features and treatment strategies. *Haematologica* 2002, 87, ECR13.

35. Sambasivan, A.; Keely, K.; Mandel, K.; Johnston, D.L. Leukemia cutis: An unusual rash in a child. *CMAJ* 2010, 182, 171–173.

36. Wong, T.Y.; Suster, S.; Bouffard, D.; Flynn, S.D.; Johnson, R.A.; Barnhill, R.L.; Mihm, M.C. Histologic spectrum of cutaneous involvement in patients with myelogenous leukemia including the neutrophilic dermatoses. *Int. J. Dermatol.* 1995, 34, 323e9.

37. Paydaş, S.; Zorludemir, S. Leukaemia cutis and leukaemic vasculitis. *Br. J. Dermatol.* 2000, 143, 773–779.

38. Cerroni, L.; Zenahlik, P.; Höfler, G.; Kaddu, S.; Smolle, J.; Kerl, H. Specific cutaneous infiltrates of B-cell chronic lymphocytic leukemia: A clinicopathologic and prognostic study of 42 patients. *Am. J. Surg. Pathol.* 1996, 20, 1000–1010.
39. Rao, A.G.; Danturty, I. Leukemia cutis. *Indian J. Dermatol.* 2012, 57, 504.
40. Elsayad, K.; Oertel, M.; Haverkamp, U.; Eich, H.T. The effectiveness of radiotherapy for leukemia cutis. *J. Cancer Res. Clin. Oncol.* 2017, 143, 851–859.
41. Hsieh, C.H.; Tien, H.J.; Yu, Y.B.; Wu, Y.H.; Shueng, P.W.; Lu, Y.F.; Wang, S.-Y.; Wang, L.-Y. Simultaneous integrated boost with helical arc radiotherapy of total skin (HEARTS) to treat cutaneous manifestations of advanced, therapy-refractory cutaneous lymphoma and leukemia—Dosimetry comparison of different regimens and clinical application. *Radiat. Oncol.* 2019, 14, 17.

Retrieved from <https://encyclopedia.pub/entry/history/show/118213>