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Litter can modify GHG fluxes often in gas-specific ways, although there are also common mechanisms underlying its

effect, which are regulated by the environmental conditions, forest management and climate change factors.
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1. Introduction

Forest ecosystems are a critical component of the global carbon (C) budget through their ability to sequester and retain

large amounts of CO  . An elucidation of the functioning of forest ecosystems, including their contribution to greenhouse

gas (GHG) exchange, is crucial for the development of adaptation and mitigation strategies. In Europe, forests cover

about 35% of the total land area, corresponding to 227 million ha with a decreasing share of coniferous (46%), broad

leaved (37%), and mixed (17%) tree species .

Forest soils influence the GHG balance, with carbon dioxide (CO ) and methane (CH ) as key elements of the global C

cycle. Of the three major GHGs the CO  flux is quantitatively often the most important and its concentration has increased

by 1.9 ppm yr−1 in the last 10 years . The biogenic sources of CO  efflux from soil are root respiration, rhizomicrobial

respiration, priming-related effects, and basal respiration associated with the microbial decomposition of organic matter in

soils . Forest ecosystems also significantly contribute to the increase in CO  emissions through forest fires,

deforestation , and CO  release by soil microorganisms colonizing dead trees . For many forests, soil CH  is

another important GHG with a global warming potential (GWP) 28 times greater than that of CO  . Soils may be a

source or sink for CH  depending on the balance between CH  production (methanogenesis in an anaerobic environment)

and CH  oxidation (methanotrophy in aerobic conditions) . The process of methanotrophy has significant mitigating

potential since methanotrophs can contribute to a reduction in atmospheric CH  (high affinity methanotrophy) on the one

hand, but, on the other hand, can also oxidize the higher soil CH  concentrations before this reaches the atmosphere (low

affinity methanotrophy) . Methanotrophy in forest soils is of particular importance, as these soils show high activity

compared to soils from other ecosystems due to the dominance of high affinity methanotrophs .

In addition to soil, the surface litter layer can make an important contribution to C and nutrient cycling in forest ecosystems

, changing the soil microclimate  and affecting soil microbiota. Forest litter is a layer of dead plant material present

on the soil surface , which may be a source of nutrients and energy for soil microorganisms  but can also act as a

bidirectional (from the atmosphere to the soil profile and vice versa) barrier to gas diffusion . The presence of litter

may modify soil–atmosphere fluxes of GHGs through different mechanisms. Due to the predicted increase in both

atmospheric CO  concentration and litter fall, the importance of the litter layer as a source of C is likely to rise , as

would any indirect effects associated, for instance, with litter acting as a barrier to gas diffusion. Additionally, management

practices in forests, e.g., cultivation or extensive deforestation, often result in enhanced litter fall combined with soil

mixing, which accelerates its decomposition and may affect CO  emissions . Thus, the litter layer could

be used as an indicator of the likely amount of trace gas emissions, such as CO , from the forest soil . In terms of CH

oxidation, it has been reported that litter is more important in regulating CH  uptake from soil than from roots . The

effect of litter on CH  consumption by forests soils has been documented to be strongly dependent on the hydrological

conditions . Moreover, the regulation of soil processes and the litter layer itself may be a source or sink of GHG's

, although this has received little attention  .

Although litter can have a major impact on the C and GHG balance in forest ecosystems, this has not always been fully

recognized. In this review we summarize the available information on the effects of litter on CO  emissions and CH

uptake in forest soils, including forest-specific impacts, environmental drivers, quantification, the influence of human

activity, and the likely effects of climate change. Based on recent research, we identify a number of knowledge gaps, and

directions for future research are highlighted for a better understanding of the relationship between litter and soil–

atmosphere GHG (CO2, CH4) exchange, as part of the C cycle.

2. Litter as a Controller of GHG (CO , CH ) Fluxes

Litter can modify GHG fluxes in different gas-specific ways, although there are also common mechanisms of its effect,

regulated by climatic conditions, forest management and climate change factors, summarized in Figure 1 .
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Figure 1. Diagram showing general drivers of litter effects on CO  emissions and CH  uptake, including regulating factors.

However, none of these effects are mutually exclusive and a litter-related increase in C substrate availability, for instance,

could occur in concert with an alteration in the microbial communities of the soil and/or a lower soil temperature, as

indicated in Table 1 .

Table 1. The main drivers underlying the effects of litter on CO  emission in different forest soils from different regions

based on field studies.
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The Main
Driver Forest Type Dominant Tree

Species

Tree
Age
[Years]

Tree
Height
[m]

DBH
[cm]

Tree
Density
[Trees/ha]

Litter
Input
[g/m /year]

MAT
[°C]

MAP
[mm] Soil Type

Soil T
(Sand
[%])

Litter as a
source of

nutrient for
microbes

Plantation T. grandis (92%) ~10 n/a 10.72
± 2.1 429 n/a n/a 1598 n/a

Plantation Eucalyptus sp. 3 12 n/a 700 n/a 25 1200 Arenosol
(FAO) S

regrowth
forest

L. pubescens,
M. sylvatica,

V. guianensis,
C. scrobiculata

(all species
represent 71%
of all stems in

the stand)

12 4.9 ±
0.4 n/a 21,300 n/a 24–

27
2539
± 280

Distrophic
Yellow Latosol
Stony Phase I

(Brazilian
Classification),
Sombriustox

(U.S. Soil
Taxonomy)

San
loam 

Plantation Ac. mangium 8 23.6 22.5 n/a

20–270
(fresh
litter);

780–1130
(decayed

litter);
1050–1160

(fresh +
decayed
litter) in
wet and

dry
season

27.3 2750 Acrisols (WRB
1998)

Pine forest P. massoniana 30 5 n/a 2600 n/a 17.8 1785
Ferric Acrisols

(USDA soil
taxonomy)

Loam
(21

Sclerophyll
forest

Cr.alba, Q.
saponaria, Pe.

boldus, L.
caustica

n/a 5.06 ±
0.87

6.51
±

1.39

2600 ±
978 314 ± 30 n/a 503 Pachic

Humixerepts
S

(62.4/2

Mixed pine-
broadleaf

forest

Cs. chinensis
(50.9%), S.
superba,

P. massoniana

100 n/a n/a n/a 861 22.3 1680 Ultisol (USDA
soil taxonomy) La

Pine forest P. massoniana
Lamb. (90%) 50 n/a n/a n/a 356 22.3 1680 Ultisol (USDA

soil taxonomy) La

Monsoon
evergreen
broadleaf

forest

Cs. chinensis;
Cr. chinensis,

S. superba,
Cr. concinna,

Ap.
yunnanensis,

Ac.
acuminatissima,
G. subaequalis

(all these
species

represent >60%
of the

community
biomass)

>400 n/a n/a n/a 849 22.3 1680 Ultisol (USDA
soil taxonomy) La

Enhancement
of anaerobic
conditions by

litter

Plantation Pl. orientalis n/a n/a n/a n/a n/a 15.7 834 Yellow brown
soil

Silt
(11
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The Main
Driver Forest Type Dominant Tree

Species

Tree
Age
[Years]

Tree
Height
[m]

DBH
[cm]

Tree
Density
[Trees/ha]

Litter
Input
[g/m /year]

MAT
[°C]

MAP
[mm] Soil Type

Soil T
(Sand
[%])

Soil moisture
retention by

litter

Mediterranean
oak woodland Qr. agrifolia n/a n/a n/a n/a n/a 19 180 n/a Grave

Montane
cloud forest

Clusiaceae,
Cunoniaceae,
Myrsinaceae,

Rosaceae,
Clethraceae

families

n/a n/a n/a n/a n/a 12.5 n/a n/a A

Pine forest P. massoniana 50 n/a n/a n/a 356 22.3 1680 Ultisol (USDA
soil taxonomy) La

Mixed
deciduous

forest

Ar. rubrum, Qr.
rubra n/a n/a n/a n/a n/a 8.5 1050 Typic

Dystrochrept
Fine

l

Old-growth
semidecidous
tropical forest

n/a n/a n/a >35 n/a n/a n/a >2000 n/a

Priming
effect

Old-growth
moist lowland
tropical forest

n/a n/a n/a n/a n/a n/a 27 2600 Oxisol

Undisturbed
old-growth

forest

Ts. heterophylla,
Ps. menziesii n/a n/a n/a n/a n/a 8.7 2370 Typic

Hapludands Coars

Undisturbed
old-growth

forest

P. menziesii,
T. heterophylla n/a n/a n/a n/a n/a 8.7 2370 Typic

Hapludands
Coars

(13%

Temperate
deciduous

forest

Q. petraea
(70%),

Cp. betulus
(30%)

100–
150 n/a n/a n/a n/a 10.7 680 Gleyic Luvisol

(WRB 2006)
L

(41.9/3

Mixed
deciduous
temperate
woodland

Ar.
pseudoplatanus,

Fr. excelsior
n/a n/a n/a n/a n/a 10 714

Stagni-vertic
Cambisol

(FAO/WRB)
Cla

Semi-
deciduous

lowland
tropical forest

Arecaceae,
Burseraceae,

Olacaceae
families

200 n/a ≥10 n/a n/a 27 2600 Clay-rich
Oxisol

2



The Main
Driver Forest Type Dominant Tree

Species

Tree
Age
[Years]

Tree
Height
[m]

DBH
[cm]

Tree
Density
[Trees/ha]

Litter
Input
[g/m /year]

MAT
[°C]

MAP
[mm] Soil Type

Soil T
(Sand
[%])

Litter can act
as an

insulating
layer that

also buffers
the effects of
variations in

light,
temperature

and
irradiation

Temperate
deciduous

forest

Qt. petraeae-
cerris

community
n/a n/a n/a n/a 2930 10.7 615.6

Brown forest
soil,

Cambisols
(FAO)

Temperate
deciduous

forest

Qt. petraeae-
cerris

community
n/a n/a n/a n/a

2754 ± 206
kg C ha

yr
10.8 599 Cambisol

T.—Tectona; Ac.—Acacia; L.—Lacistema; M.—Myrcia; V.—Vismia; C.—Cupania; P.—Pinus; Pc.—Picea; Cr.—

Cryptocarya; Cs.—Castanopsis; Q—Quillaja; Pe.—Peumus; L.—Lithraea; S.—Schima; Ap.—Aporosa; Ac.—Acmena; G.

—Gironniera; Pl.—Plactycladus; Qr—Quercus; Ar.—Acer; Ts.—Tsuga; Cp.—Carpinus; Fr.—Fraxinus; Qt.—Quercetum;

Ps.—Pseudotsuga; DBH—diameter at breast height; n/a—data not available; Methods: * gas chromatography (GC); **

infrared gas analyzer (IRGA); *** quantum cascade laser (QCL) spectrometer **** soda-lime technique.

 

 

The diffusion of CH  from the atmosphere into the soil strongly affects CH  consumption, since the upper-most well-

aerated mineral soil located immediately underneath the organic layer exhibits the highest methanotrophic activity .

The mechanisms associated with the effects of litter atmospheric CH 4 uptake by soils are regulated by moisture ,

as CH  diffusion is 10 4 times slower in water than in air .

It is difficult to quantify the effects of litter or litter quality on GHG emissions because of the paucity of reliable data. Two

examples (the Figure A1 in Appendix A ) indicate that the effects of litter can vary depending on the GHG under

consideration, with a positive effect of litter amount on CO fluxes but a negative effect on CH  fluxes, assuming that litter

thickness reflects the amount of litter present. The correlations are significant but could be influenced by a range of other

factors, e.g., variation in soil conditions, tree species, and climate zones.

3. Tree Species-Specific Mechanisms of the Effects of Litter on GHG
Fluxes

The contribution of the litter layer to respiration ranged from 5% to 45% of the total CO  emissions from temperate forests

soils . The emissions of CO  were confirmed to be often lower in coniferous forest soils than in deciduous forests . A

meta-analysis revealed that natural and doubled litter inputs increased soil respiration in forest ecosystems by 36% and

55%, respectively. The effect of litter inputs on the increase in soil respiration in different types of forests was of the

following order: coniferous forests (50.7%) > broad-leaved forests (41.3%) > mixed forests (31.9%) . In coniferous

forests, the removal of litter caused a reduction in CO  emissions, ranging from 2.61% in a fir forest in Poland to 68% in a

Pinus caribeae plantation in Puerto Rico . After the litter layer removal in a pine forest, CO  emissions were reduced by

43%, while CH  uptake increased more than twofold under dry and warm soil conditions .

Broad leaf forests were found to have a relatively higher mean annual litter fall and a higher litter quality compared to

mixed or pine forests . The removal of litter reduced CO  emissions, to varying extents, depended on the type of

deciduous tree species. In hornbeam oak forests, soil respiration decreased only slightly: from 2.88 kg CO  m  year  (

with litter research point) to 2.78 kg CO  m  year  (litter-free research point), but in the acidophilous beech forest, CO

emissions decreased from 2.18 kg CO  m year  to 1.32 kg CO  m  year  after excluding litter. The amount of CO

emitted from forest soils also depended on the rate of litter decomposition, which differed in different types of forests . A

beech stand was found to have the slowest litter decomposition, and its accumulation was approximately two to three

times higher than in mixed stands of deciduous tree species . Similarly, in a hornbeam oak forest litter decomposition

processes were faster and CO  was released more rapidly than in a beech forest. It was estimated that the average

decrease in soil respiration globally after litter removal was 27% for different types of forests. The litter decomposition rate,

along with soil respiration decreased after litter removal, in a seasonally flooded forest and an upland forest where litter

removal resulted in a 10–20% reduction in soil respiration . Therefore, it can be concluded that the rate of litter

decomposition made a significant contribution to differences in soil CO  emissions between various ecosystems. Tropical

forests were very important in this context , and may have contributed about 67% to the total annual global CO  efflux

. These forests could react differently to litter manipulations, since they differed from temperate forests in terms of soil

age, biotic composition, erosion, and/or uplift rates . Tropical and subtropical forests may also have varied

significantly in soil abiotic (e.g., soil moisture and temperature) and biotic (e.g., litter quantity and quality, tree species)

factors, which also influenced the impact of litter inputs on CO  emissions .
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Similar to CO  emissions, forest types differ in soil CH uptake ability. The high consumption of atmospheric CH  by forest

soils confirms the involvement of high affinity methanotrophs  and the process is carried out by different groups of

methanotrophs . Among the most abundant methanotrophs, Methylocystis spp. and Methylococcus more often

populate deciduous forest soils than mixed and coniferous forest soils . A number of studies conducted under the same

climatic conditions also indicate that tree species affect CH  uptake in forest soils, with deciduous forests consuming more

CH  than coniferous forests . One of the explanations for this is that it is due to vegetation and soil-related

differences in the structure and activity of methanotroph communities . Of the factors that could be important, litter

and soils from coniferous forests have a lower pH than deciduous stands, typically ranging between 3 and 4 in pine-

dominated forests . Such conditions are below the optimum typical level for methanotrophs  and may result

in a lower CH  uptake; however, some methanotrophs have adapted to such conditions in forest soils . A study on

different temperate tree species shows that soil under beech trees is more acidic and has lower inputs of Ca and Mg via

litter in comparison with mixed stands of deciduous tree species .

The properties of the litter itself are also an important factor. Litter in deciduous forests is characterized by a higher

degradability than in coniferous forests, which results in higher soil N turnover rates . Strong interactions between CH

oxidation and soil N have also been reported . In temperate forests, N fertilization is reported to reduce the CH

sink  due to a salt effect  or a higher nitrification rate . In subtropical forests, N deposition can suppress CH

uptake by altering methanotroph and methanogen abundance, diversity, and community structure .

4. Environmental Controllers of the Impact of Litter on GHG Fluxes

Consideration of the litter effect on soil GHG fluxes should include the role of climatic conditions, mainly temperature and

precipitation. Due to the dynamics of these parameters, the litter effect on GHG fluxes may show significant seasonal

variability.

In an oak forest rainfall is reported to increase CO  emissions, which results in the rapid reactivation of litter-associated

microorganisms . On the other hand, in a tropical montane cloud forest in Peru, lower moisture levels do not change

the soil respiration after litter removal, which is explained by the fact that the litter and organic matter are decomposed by

microorganisms with different moisture sensitivities . Litter respiration also depends largely on moisture content, and

the contribution of litter to soil respiration is influenced by the frequency and amount of precipitation . Warm

and humid climatic conditions accelerate organic matter decomposition, resulting in increased rates of soil respiration .

Changes in the water content of the litter layer are often transient, since litter is directly exposed to wind and solar

radiation ; nevertheless, they can influence CO  emissions, and therefore the overall forest CO  budget . Continuous

cycles of wetting and drying of the litter layer led to transient CO  emissions . An increase in CO  emissions followed

by an increase in the litter moisture content due to rainfall was also reported in a semi-deciduous old-growth tropical forest

(with mostly evergreen species)  and in a forest dominated by Quercus serrata Thunb. . Studies carried out in

coniferous and deciduous forests in different locations in Europe (Italy, the Netherlands, and Finland) show that leaf litter

is the main source of CO  and the emissions peaked at the higher moisture contents for all types of litter, temperatures, or

sites, while the optimum soil CO  emissions are achieved at intermediate moisture contents (40–70% WFPS) . Litter

removal causes a decrease in soil moisture  (compared to soil with litter) and when soil moisture is low, both the

transport of nutrients and the metabolism of decomposing microbes are reduced .

Hydrological conditions are a strong regulator of the CH  cycle since saturated (flooded) soil can be a source of methane,

while well-aerated soil can be a sink of this gas . After a high rainfall in the temperate zone or during the wet season in

a tropical climate, soil may also emit CH , although the net exchange between soils and the atmosphere depends on how

this impacts the balance between CH  production and consumption . The strong dependence of CH  oxidation on

water content is confirmed as litter addition during the dry season does not significantly affect CH  uptake, while it

decreases it by 47.1 ± 4.9% during the wet season after doubling the litter level ). The litter effect may result from

enhanced microbial activity and/or from changes in litter quality and decomposition rate . It is reported that litter may

store water during rainfall events. Since water cannot penetrate the mineral soil, a high soil diffusivity is maintained .

However, a study on different types of needle leaf and broad leaf litters revealed that the rainfall interception storage

capacity of the litter layer varied with physical features and rainfall characteristics . The interception-related storage

capacity of needle leaf litters varied significantly with the litter type, while there were no significant differences in water

storage across the broad leaf litter types. It was reported that a higher intensity or longer duration of rainfall events could

increase the interception storage capacity in all broad leaf and needle leaf litters .

The litter layer was an effective insulator, isolating the soil from the effects of variations in irradiance, consequently

lowering soil temperature . In a deciduous forest, litter and soil temperatures were responsible for 68% to 81% of the

variability in CO  emissions, respectively . When there was no litter on the soil surface, the influence of temperature on

soil respiration was higher, the activity of soil microbes and their enzymes increased, and the degradation of organic

matter was greater. Thus, under these conditions, an increase in soil CO  emissions could often be observed .

After the removal of litter in a Quercetum petraeae-cerris forest in northeastern Hungary, the soil was found to reach
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higher temperatures in summer and lower temperatures in winter . The greatest reductions in CO  emissions after litter

exclusion were observed in a Cinnamomum camphora forest in China (39.2%) , in a beech ( Fagus sylvatica ) forest in

Poland (about 39.45%) , and in a wet tropical forest dominated by Tabebuia heterophylla in Puerto Rico (54%) .
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