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Litter can modify GHG fluxes often in gas-specific ways, although there are also common mechanisms underlying

its effect, which are regulated by the environmental conditions, forest management and climate change factors.
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| 1. Introduction

Forest ecosystems are a critical component of the global carbon (C) budget through their ability to sequester and
retain large amounts of CO, . An elucidation of the functioning of forest ecosystems, including their contribution
to greenhouse gas (GHG) exchange, is crucial for the development of adaptation and mitigation strategies. In
Europe, forests cover about 35% of the total land area, corresponding to 227 million ha with a decreasing share of

coniferous (46%), broad leaved (37%), and mixed (17%) tree species [,

Forest soils influence the GHG balance, with carbon dioxide (CO,) and methane (CH,) as key elements of the
global C cycle. Of the three major GHGs the CO, flux is quantitatively often the most important and its
concentration has increased by 1.9 ppm yr-1 in the last 10 years 2. The biogenic sources of CO, efflux from soil
are root respiration, rhizomicrobial respiration, priming-related effects, and basal respiration associated with the
microbial decomposition of organic matter in soils ©l. Forest ecosystems also significantly contribute to the
increase in CO, emissions through forest fires, deforestation BIEIZl and CO, release by soil microorganisms
colonizing dead trees . For many forests, soil CH, is another important GHG with a global warming potential
(GWP) 28 times greater than that of CO, 8. Soils may be a source or sink for CH, depending on the balance
between CH, production (methanogenesis in an anaerobic environment) and CH, oxidation (methanotrophy in
aerobic conditions) LY. The process of methanotrophy has significant mitigating potential since methanotrophs
can contribute to a reduction in atmospheric CH, (high affinity methanotrophy) on the one hand, but, on the other
hand, can also oxidize the higher soil CH, concentrations before this reaches the atmosphere (low affinity
methanotrophy) 1. Methanotrophy in forest soils is of particular importance, as these soils show high activity

compared to soils from other ecosystems due to the dominance of high affinity methanotrophs 22!,

In addition to soil, the surface litter layer can make an important contribution to C and nutrient cycling in forest
ecosystems 2l changing the soil microclimate 1415 and affecting soil microbiota. Forest litter is a layer of dead

plant material present on the soil surface 8 which may be a source of nutrients and energy for soil
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microorganisms 17 but can also act as a bidirectional (from the atmosphere to the soil profile and vice versa)
barrier to gas diffusion B89 The presence of litter may modify soil-atmosphere fluxes of GHGs through
different mechanisms. Due to the predicted increase in both atmospheric CO, concentration and litter fall, the
importance of the litter layer as a source of C is likely to rise 2221 as would any indirect effects associated, for
instance, with litter acting as a barrier to gas diffusion. Additionally, management practices in forests, e.g.,
cultivation or extensive deforestation, often result in enhanced litter fall combined with soil mixing, which

accelerates its decomposition and may affect CO, emissions [LIL31122]123][241[25]126] Thys, the litter layer could be

used as an indicator of the likely amount of trace gas emissions, such as CO,, from the forest soil 8. In terms of
CH, oxidation, it has been reported that litter is more important in regulating CH, uptake from soil than from roots
[27], The effect of litter on CH, consumption by forests soils has been documented to be strongly dependent on the
hydrological conditions [18I19[28] Moreover, the regulation of soil processes and the litter layer itself may be a

source or sink of GHG's [2BA81] athough this has received little attention 32,

Although litter can have a major impact on the C and GHG balance in forest ecosystems, this has not always been
fully recognized. In this review we summarize the available information on the effects of litter on CO, emissions
and CH, uptake in forest soils, including forest-specific impacts, environmental drivers, quantification, the influence
of human activity, and the likely effects of climate change. Based on recent research, we identify a number of
knowledge gaps, and directions for future research are highlighted for a better understanding of the relationship

between litter and soil-atmosphere GHG (CO2, CH4) exchange, as part of the C cycle.

| 2. Litter as a Controller of GHG (CO,, CH,) Fluxes

Litter can modify GHG fluxes in different gas-specific ways, although there are also common mechanisms of its

effect, regulated by climatic conditions, forest management and climate change factors, summarized in Figure 1 .
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Figure 1. Diagram showing general drivers of litter effects on CO, emissions and CH, uptake, including regulating
factors.

However, none of these effects are mutually exclusive and a litter-related increase in C substrate availability, for
instance, could occur in concert with an alteration in the microbial communities of the soil and/or a lower soil

temperature, as indicated in Table 1.

Table 1. The main drivers underlying the effects of litter on CO, emission in different forest soils from different

regions based on field studies.
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The Main
Driver
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T.—Tectona; Ac.—Acacia; L.—Lacistema; M.—Myrcia; V.—Vismia; C.—Cupania; P.—Pinus; Pc.—Picea; Cr.—

Cryptocarya; Cs.—Castanopsis; Q—Quillaja; Pe.—Peumus; L.—Lithraea; S.—Schima; Ap.—Aporosa; Ac.—

Acmena; G.—Gironniera; Pl.—Plactycladus; Qr—Quercus; Ar—Acer; Ts.—Tsuga; Cp.—Carpinus; Fr—Fraxinus;

Qt.—Quercetum; Ps.—Pseudotsuga; DBH—diameter at breast height; nf/a—data not available; Methods: * gas

chromatography (GC); ** infrared gas analyzer (IRGA); *** quantum cascade laser (QCL) spectrometer **** soda-

lime technique.
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The diffusion of CH, from the atmosphere into the soil strongly affects CH, consumption, since the upper-most
well-aerated mineral soil located immediately underneath the organic layer exhibits the highest methanotrophic
activity (281461, The mechanisms associated with the effects of litter atmospheric CH 4 uptake by soils are regulated

by moisture 2227321 a5 CH, diffusion is 10 4 times slower in water than in air (47,

It is difficult to quantify the effects of litter or litter quality on GHG emissions because of the paucity of reliable data.
Two examples (the Figure Al in Appendix A ) indicate that the effects of litter can vary depending on the GHG
under consideration, with a positive effect of litter amount on CO, fluxes but a negative effect on CH, fluxes,
assuming that litter thickness reflects the amount of litter present. The correlations are significant but could be

influenced by a range of other factors, e.g., variation in soil conditions, tree species, and climate zones.

3. Tree Species-Specific Mechanisms of the Effects of Litter
on GHG Fluxes

The contribution of the litter layer to respiration ranged from 5% to 45% of the total CO, emissions from temperate
forests soils [El. The emissions of CO, were confirmed to be often lower in coniferous forest soils than in deciduous
forests 481, A meta-analysis revealed that natural and doubled litter inputs increased soil respiration in forest
ecosystems by 36% and 55%, respectively. The effect of litter inputs on the increase in soil respiration in different
types of forests was of the following order: coniferous forests (50.7%) > broad-leaved forests (41.3%) > mixed
forests (31.9%) 9. In coniferous forests, the removal of litter caused a reduction in CO, emissions, ranging from
2.61% in a fir forest in Poland to 68% in a Pinus caribeae plantation in Puerto Rico BY. After the litter layer removal
in a pine forest, CO, emissions were reduced by 43%, while CH, uptake increased more than twofold under dry

and warm soil conditions 311,

Broad leaf forests were found to have a relatively higher mean annual litter fall and a higher litter quality compared
to mixed or pine forests 5253l The removal of litter reduced CO, emissions, to varying extents, depended on the
type of deciduous tree species. In hornbeam oak forests, soil respiration decreased only slightly: from 2.88 kg CO,
m ~2 year ~1 ( with litter research point) to 2.78 kg CO, m ~2 year ! (litter-free research point), but in the
acidophilous beech forest, CO, emissions decreased from 2.18 kg CO, m ~2year ~! to 1.32 kg CO, m ~2 year 1
after excluding litter. The amount of CO, emitted from forest soils also depended on the rate of litter decomposition,
which differed in different types of forests B4, A beech stand was found to have the slowest litter decomposition,
and its accumulation was approximately two to three times higher than in mixed stands of deciduous tree species
B3 Similarly, in a hornbeam oak forest litter decomposition processes were faster and CO, was released more
rapidly than in a beech forest. It was estimated that the average decrease in soil respiration globally after litter
removal was 27% for different types of forests. The litter decomposition rate, along with soil respiration decreased
after litter removal, in a seasonally flooded forest and an upland forest where litter removal resulted in a 10-20%
reduction in soil respiration B8, Therefore, it can be concluded that the rate of litter decomposition made a
significant contribution to differences in soil CO, emissions between various ecosystems. Tropical forests were
very important in this context 42, and may have contributed about 67% to the total annual global CO, efflux 281,

These forests could react differently to litter manipulations, since they differed from temperate forests in terms of
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soil age, biotic composition, erosion, and/or uplift rates 758 Tropical and subtropical forests may also have
varied significantly in soil abiotic (e.g., soil moisture and temperature) and biotic (e.g., litter quantity and quality,

tree species) factors, which also influenced the impact of litter inputs on CO, emissions BAEZIBAE0]

Similar to CO, emissions, forest types differ in soil CH, uptake ability. The high consumption of atmospheric CH,4 by
forest soils confirms the involvement of high affinity methanotrophs (12 and the process is carried out by different
groups of methanotrophs 81, Among the most abundant methanotrophs, Methylocystis spp. and Methylococcus
more often populate deciduous forest soils than mixed and coniferous forest soils 2. A number of studies
conducted under the same climatic conditions also indicate that tree species affect CH, uptake in forest soils, with
deciduous forests consuming more CH, than coniferous forests [281140631[64] One of the explanations for this is that
it is due to vegetation and soil-related differences in the structure and activity of methanotroph communities 621631,
Of the factors that could be important, litter and soils from coniferous forests have a lower pH than deciduous
stands, typically ranging between 3 and 4 in pine-dominated forests B8IE7I68IEA gych conditions are below the
optimum typical level for methanotrophs X9 and may result in a lower CH, uptake; however, some methanotrophs
have adapted to such conditions in forest soils 1. A study on different temperate tree species shows that soil
under beech trees is more acidic and has lower inputs of Ca and Mg via litter in comparison with mixed stands of

deciduous tree species [Z2155],

The properties of the litter itself are also an important factor. Litter in deciduous forests is characterized by a higher
degradability than in coniferous forests, which results in higher soil N turnover rates 3l Strong interactions
between CH, oxidation and soil N have also been reported 43781 |n temperate forests, N fertilization is reported
to reduce the CH, sink 4 due to a salt effect 18 or a higher nitrification rate 2. In subtropical forests, N
deposition can suppress CH, uptake by altering methanotroph and methanogen abundance, diversity, and

community structure 89,

4. Environmental Controllers of the Impact of Litter on GHG
Fluxes

Consideration of the litter effect on soil GHG fluxes should include the role of climatic conditions, mainly
temperature and precipitation. Due to the dynamics of these parameters, the litter effect on GHG fluxes may show

significant seasonal variability.

In an oak forest rainfall is reported to increase CO, emissions, which results in the rapid reactivation of litter-
associated microorganisms 8. On the other hand, in a tropical montane cloud forest in Peru, lower moisture levels
do not change the soil respiration after litter removal, which is explained by the fact that the litter and organic
matter are decomposed by microorganisms with different moisture sensitivities 2. Litter respiration also depends
largely on moisture content, and the contribution of litter to soil respiration is influenced by the frequency and
amount of precipitation 2814981182 \Warm and humid climatic conditions accelerate organic matter decomposition,
resulting in increased rates of soil respiration 3. Changes in the water content of the litter layer are often transient,

since litter is directly exposed to wind and solar radiation [B4l: nevertheless, they can influence CO, emissions, and
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therefore the overall forest CO, budget B3, Continuous cycles of wetting and drying of the litter layer led to
transient CO, emissions 8488l An increase in CO, emissions followed by an increase in the litter moisture content
due to rainfall was also reported in a semi-deciduous old-growth tropical forest (with mostly evergreen species) 411
and in a forest dominated by Quercus serrata Thunb. 4. Studies carried out in coniferous and deciduous forests
in different locations in Europe (Italy, the Netherlands, and Finland) show that leaf litter is the main source of CO,
and the emissions peaked at the higher moisture contents for all types of litter, temperatures, or sites, while the
optimum soil CO, emissions are achieved at intermediate moisture contents (40-70% WFPS) B2, Litter removal
causes a decrease in soil moisture 22! (compared to soil with litter) and when soil moisture is low, both the

transport of nutrients and the metabolism of decomposing microbes are reduced (£8189],

Hydrological conditions are a strong regulator of the CH, cycle since saturated (flooded) soil can be a source of
methane, while well-aerated soil can be a sink of this gas 19. After a high rainfall in the temperate zone or during
the wet season in a tropical climate, soil may also emit CH,, although the net exchange between soils and the
atmosphere depends on how this impacts the balance between CH, production and consumption 19, The strong
dependence of CH, oxidation on water content is confirmed as litter addition during the dry season does not
significantly affect CH, uptake, while it decreases it by 47.1 + 4.9% during the wet season after doubling the litter
level 27y, The litter effect may result from enhanced microbial activity and/or from changes in litter quality and
decomposition rate (28], |t is reported that litter may store water during rainfall events. Since water cannot penetrate
the mineral soil, a high soil diffusivity is maintained 8. However, a study on different types of needle leaf and
broad leaf litters revealed that the rainfall interception storage capacity of the litter layer varied with physical
features and rainfall characteristics 29, The interception-related storage capacity of needle leaf litters varied
significantly with the litter type, while there were no significant differences in water storage across the broad leaf
litter types. It was reported that a higher intensity or longer duration of rainfall events could increase the

interception storage capacity in all broad leaf and needle leaf litters 29,

The litter layer was an effective insulator, isolating the soil from the effects of variations in irradiance, consequently
lowering soil temperature 2. In a deciduous forest, litter and soil temperatures were responsible for 68% to 81%
of the variability in CO, emissions, respectively B3, When there was no litter on the soil surface, the influence of
temperature on soil respiration was higher, the activity of soil microbes and their enzymes increased, and the
degradation of organic matter was greater. Thus, under these conditions, an increase in soil CO, emissions could
often be observed [ZLELI92I93]  After the removal of litter in a Quercetum petraeae-cerris forest in northeastern
Hungary, the soil was found to reach higher temperatures in summer and lower temperatures in winter 43, The
greatest reductions in CO, emissions after litter exclusion were observed in a Cinnamomum camphora forest in
China (39.2%) 24, in a beech ( Fagus sylvatica ) forest in Poland (about 39.45%) 4, and in a wet tropical forest
dominated by Tabebuia heterophylla in Puerto Rico (54%) B9,
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