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Software Defined Networking(SDN)has recently received much attention to address some of the enduring

networking challenges. SDN’s concept is based on ideas of generalization network hardware and decoupling the

network controls software from the implementation devices . SDN is a new intelligent architecture for network

programmability. SDN’s main idea is to separate the control plane from the network devices, enabling the data

control from a central and external software entity called an SDN controller. The Open Networking Foundation

(ONF) is a non-profit consortium dedicated to the development, standardization, and commercialization of SDN for

the transport and IP network layer.

SDN  machine learning  IoT  SDN leveraging ML  IoT leveraging SDN

1. Introduction

Figure 1 presents SDN layered architecture, consisting of  four planes: data plane, management plane, control

plane and application plane. The Data plane presents a forwarding table that forwards the incoming packets to a

network device. Management plane provides intelligent provisioning and orchestration systems for entire network

management. The control plane is also termed as the brain of the networks that control different types of data

planes using SBIs and protocols. The application plane defines the layer on different northbound applications that

exist, which can help out SDN perform and solve future challenges of 5G, as this plane brings innovation,

openness, and flexibility for the network vendors. SDN architecture provides dynamicity, network flexibility, and

management capabilities. Research studies suggest SDN is the most reliable and promising for separating

strategic network computation and data forwarding.
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Figure 1. SDN Architecture.

Several northbound interfaces (NBIs) between the control plane and applications were introduced to provide high-

level abstractions to the applications that reside on the control plane and in the form of various network-level

services. OpenFlow  is a significant addition to the southbound interfaces (SBIs) that enable the network to be

managed efficiently. Nevertheless, SDN can not be limited to OpenFlow as other less conventional protocols exist

such as ForCES , NETCONF , OVSDB , Pollex , LISP , and OpenState . OpenFlow deports all the

intelligence to a centralized entity called SDN controller, which enables the separation of the control plane from the

forwarding plane. There are three SDN functions in the panorama of OpenFlow, status reporting for each device

connection, slicing, and flow-based forwarding. OpenFlow-based interconnection device matches the packets

against a flow table inside the forwarding plane. FlowVisor controller is responsible for handling the flows,

decisions, and publishing of the policies.

2. OpenFlow

OpenFlow provides an interface-based communication among the infrastructure and control layer based on open

networking Foundation (ONF) . Moreover, it provisions a way for controlling switches regardless of source

code disclosure by the vendors. In summary, Openflow provides a way to directly access and manipulate the

forward plan of switches and routers . Furthermore, it grants access towards the flowable and provides

instructions to the switches on managing and direct traffic of the network. It allows the network managers to alter

the network flow in a short time span . According to studies, there are two main categories of OpenFlow-based

switches: OpenFlow-only and OpenFlow-hybrid. OpenFlow support is limited to OpenFlow operations, while the

hybrid version supports operations and normal Ethernet switches .

The OpenFlow controllers are responsible for managing the OpenFlow switches based on a secure channel

protocol called OpenFlow protocol. One or more flow tables are contained within a switch for performing a
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forwarding operation and packet tracing. A flow table includes a flow entry; each entry possesses header fields,

specific counters, and actions. The purpose of a header field is to match up against packets with information

related to VLAN, ID, source and destination ports and IP address, etc. There are counters for keeping information

about the number of packets their sizes. Action provides information associated to processing and matching

packets; Their forwarding action is also specified, such as being sent to the controller or a port or sometimes

dropped . OpenFlow channel provides an interface for connecting the switches and controllers. Using this

interface, the switches are being managed and configured by the controller; additionally, the events are received,

and packets are sent through the switches. Various messages are sent using this channel, including asynchronous

messages that involve messages for updating the controller regarding the network event and state change. The

second type is controller-to-switch messages; these messages are for managing and inspection of switch states.

Lastly, symmetric messages are initiated by the switch or the controller and are sent unsolicited .

OpenFlow controller is responsible for managing, allocating, and updating instructions and policies to the

networking devices. It can decide how to handle packets with invalid flow entries and control the switch flow table.

OpenFlow switch can establish communication with one or more controllers. A multiple-controller architecture can

increase network reliability if a switch fails. OpenFlow starts operations when the switch is connected to all its

configured controllers simultaneously, whereas related messages are only sent to the next switch .

3. Data Plane

The Data plane resides at the bottom layer of SDN architecture, consisting of forwarding devices such as routers

and switches, whether virtual or physical. Virtual switches are software-based switches that run on a common

operating system (OS), examples of virtual switches are Open vSwitch , Pantou , and Indigo . Physical

switches are hardware-based switches, implemented either on open network hardware such as NetFPGA , or

on a merchant switch from networking hardware vendors. ServerSwitch  and switchBlade  are two examples

of NetFPGA-based physical switches. Hardware vendors design their’s merchant switches with the support of SDN

protocols, for example virtual switches are more flexible and have complete feature support for SDN protocols.

Physical switches have a high rate of flow forwarding as compared to virtual switches. Both are used to forward,

drop, and modify packets using the control plane logic.

4. Control Plane

In SDN, the control plane acts as the brain that performs a set of actions; for example, it applies flow rules to

handle the received ethernet frames that decide the traffic destination ports. SDN controller program network

resources, control communication between applications and forwarding devices. SDN controller translates

application plane requirements into policies and distributes these custom policies into forwarding devices. Control

plane functionalities include network topology storage, configuration of devices, notification of state information,

and shortest path routing. Some of the SDN controller architectures proposed in literature are NOX , Floodlight

, POX , OpenDayLight , Ryu , and Beacon . SDN controller has three interfaces for communication:

southbound, eastbound westbound. Control data plane interfaces (CDPIs) are interfaces between the data and
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control plane. CDPIs are also called SBIs, used for forwarding devices to exchange control policies and network

state information with the control plane of an SDN controller. SBIs allow programmatic-based control of all device

capabilities such as event notifications, advertisements, statistic reports, and forwarding operations. NBIs are

exploited by applications to get an abstract view of the network to facilitate automation, analyze specific network

behaviors, and analyze network requirements. Eastbound interfaces (EBIs) and westbound interfaces (WBIs) are

used in the multi-controller SDN solutions. In multi-controller SDN networks, the exchange of information is

important between controllers to provide a global network view to the applications. Examples of distributed control

architectures are HyperFlow  and Onix . EBIs and WBIs are private and cannot communicate with each other.

SDN communication-interfaces , distributed-control plane (CIDC) , and east-west bridge  are some

proposals for communication between different SDN controllers.

5. Application Plane

The top layer in the SDN is called the application plane, consisting of business applications. Business applications

provide management and optimization of business services. These applications implement the control logic based

on the network state information received from controller NBIs to modify the network behavior. In the study,  the

solutions of SDN for traffic engineering are discussed. In paper , a security-based survey study is conducted.

Yan et al.  proposed analysis of distributed denial of service (DDoS) attacks in SDN networks in a cloud

computing environment. A survey on fault management issues in SDN and its solutions is presented in . SDN is

deployed in real-time scenarios including transport network, wireless networks , optical networks , wide

area networks (WAN) , IoT, EC , and cloud computing .

6. P4 (Programming Protocol-Independent Packet
Processors)

P4 is a programming language to access the hardware without the knowledge of the architecture of hardware. P4

is used to modify the packet-forwarding mechanisms of the SDN switches . Initially, P4 was used to write

software programs and program hardware switches. Hardware resources including network interface cards,

networking appliances, FPGA, and ASIC. P4 is used to set the custom headers and dynamic parsing of headers

from the packet . P4 provides the custom match and action tables and other constructs such as counters,

registers, etc. This makes the P4 language entirely protocol-free. If a definite protocol is used in the network, it is

easy to reconstruct the P4 program for new header field maintenance. Other P4 features include configurations,

making new P4 applications reusable if needed rather than purchasing new networking devices. Furthermore, the

P4 is free from any target device specifications and characteristics. Nonetheless, P4 is dependent upon the design

of a device. The P4 application written for a distinct architecture is deployable beyond all destination devices with

the same architectural design . The P4 program is specially created for the data planes layer; however, the

destination device may hold both the control and data planes. P4 is also used in literature for defining the

interfaces between the control and data plane partially, but it cannot manage the control plane’s functionality.
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