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Oxygen reduction reaction (ORR) has attracted considerable attention for clean energy conversion technologies to reduce

traditional fossil fuel consumption and greenhouse gas emissions. Although platinum (Pt) metal is currently used as an

electrocatalyst to accelerate sluggish ORR kinetics, the scarce resource and high cost still restrict its further scale-up

applications. In this regard, biomass-derived carbon electrocatalysts have been widely adopted for ORR electrocatalysis

in recent years owing to their tunable physical/chemical properties and cost-effective precursors.
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1. Introduction

The electrocatalytic activity of oxygen reduction reaction (ORR) significantly determines the performance of current

energy conversion and storage devices, including various fuel cells and metal–air batteries . Due to the sluggish

kinetics of the ORR process, electrocatalysts have usually been required to accelerate the reaction rates and decrease

the overpotentials . Currently, platinum (Pt)-group metal (PGM) based materials have been broadly utilized and

regarded as the most effective electrocatalysts for ORR catalysis . However, the disadvantages of scarce resource,

high-cost and poor durability greatly limit their further scale-up applications . In this regard, a great number of efforts

have concentrated on the development of cost-effective and high-performance candidates to replace the state-of-the-art

PGM-based electrocatalysts .

Up to now, transition metal compound based and heteroatom doped metal-free carbon-based materials are two

representative types of PGM-free electrocatalysts for ORR . For example, transition-metal-nitrogen-carbon (M-N-C),

transition metal oxides (TMOs), nitrides (TMNs), and phosphides (TMPs) based carbon hybrids , such as

single-atom transition-metal-doped (Fe, Co, Mn, etc.) , have been well accepted as the promising candidates to

replace PGM-based electrocatalysts. In these transition-metal-based electrocatalysts, M -N  sites  or pyridinic and

graphitic-N  have been recognized as the main active sites. Recently, different kinds of carbon materials (carbon

nanotube, graphene, carbon nanofiber, etc.) have been developed as high-performance ORR electrocatalysts due to high

electronic conductivity, excellent stability, tunable morphology, and facile functionality . Although investigations into

carbon nanotube and graphene as electrocatalysts have attracted significant attention for ORR electrocatalysis, scaled-up

application of such carbon nanomaterials is still limited by high cost or deficient activity . Fortunately, more and

more inexpensive methods have been proposed to prepare graphene with high quality. For example, Tour and coworkers

have developed a less expensive approach using six easily obtained raw-carbon-containing materials including cookies,

chocolate, grass, plastics, cockroaches, and dog feces to grow graphene directly on the back of a Cu foil at 1050 °C

under H /Ar flow . In recent years, designing efficient carbon electrocatalysts with sustainable and abundant biomass

materials as precursors have been rapidly emerged owing to their cost-effective fabrication and environmentally friendly

. At present, various biomass materials have been reported as promising precursors to synthesize porous carbon, such

as sugar , lignocellulose , animal biomass , natural cattail fibers , haddock peel , dandelion seeds ,

mulberry leaves , chitosan , gelatin , chitin  etc. Besides the commonly used method of thermal decomposition

to prepare biomass-derived carbon electrocatalysts, several strategies including activation , hydrothermal carbonization

, molten salt carbonization  and template method  have been proposed. Except for their renewable and

sustainable properties, rich heteroatoms composition and inherited porous structure are two desirable features .

Biomass with natural pore structures and abundant active sites are promising to afford a tailorable template for

electrocatalyst synthesis. However, it should be noted that the structural features and chemical composition of biomass

would be different from region to region, thus resulting in a diverse performance.

There have been several valuable reviews on the achievements of biomass-derived carbon electrocatalysts including their

preparation, physicochemical properties and ORR applications . However, the progress focusing on the

optimization strategies of pore structure and active site for oxygen electroreduction has not been specifically summarized
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yet. Moreover, this research field is developing rapidly. Therefore, it is highly essential to provide a timely review as well as

in-depth understanding of optimization strategies on ORR performance by considering them in entirety (Figure 1).

Figure 1. Schematic overview of three important aspects for the development of advanced biomass-derived carbon

electrocatalysts for oxygen reduction reaction (ORR).

2. Performance Evaluation of Biomass-Derived Carbon Electrocatalysts
for ORR

To reliably evaluate the ORR performance of biomass-derived carbon electrocatalysts , constructing a general and

standard procedure is highly necessary. So far, the widely adopted method to assess the intrinsic activity of catalysts is

based on the rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) measurement . Such method is

capable of avoiding the mass transfer concerns and thus affording a stable ORR kinetic current density (j ), because the

working electrode rotates at a high speed during the evaluation process (Figure 2a) . Typically, ORR measurement is

carried out in a three-electrode system, in which the electrocatalyst is the working electrode, an Ag/AgCl or Hg/HgO

electrode is the reference electrode, and a Pt wire is the counter electrode . The electrocatalysts are usually dispersed

in solvent with Nafion as binders to form a uniform slurry. Then the slurry is drop-casted on glassy carbon (GC)-based

RDE or RRDE . Of note, the quality of drop-casting film and loading amount of electrocatalyst directly affects the ORR

kinetics. Therefore, uniform catalyst films and appropriate catalyst mass loadings on the electrode are essential to obtain

an accurate ORR performance, including onset potential (E ), half-wave potential (E ), limiting current density (j ) and

Tafel slope parameters . A positive shift of E  or E , large j , and small Tafel slope indicate high ORR activity and

fast ORR kinetics, respectively .

Figure 2. (a) The rotating ring disk electrode (RRDE) configuration: glassy carbon (GC)-disk is used as a substrate to

load electrocatalysts for ORR, and Pt-ring is used to detect the produced peroxide species from electrocatalyst layer. (b)

General ORR mechanism via direct four-electron (4e ) reduction and indirect two-electron (2e ) peroxide pathways.

Reproduced with permission . Copyright 2020, Wiley-VCH.

Generally, two ORR pathways have been proposed: one is the direct four-electron (4e ) reduction pathway, the other is

the indirect two-electron (2e ) peroxide pathway (Figure 2b) . O  can be directly reduced to H O through the 4e

pathway with a rate constant k ; alternatively, it can also be reduced to adsorbed hydrogen peroxide (H O ) through the

2e  pathway with a rate constant k  (HO  in alkaline medium and H O  in acidic medium). The amount of H O  was

calculated according to Equation (1). Subsequently, H O  could either be electrochemically reduced to H O with a rate

constant k , or could be chemically decomposed to O  with a rate constant k  on surface, and desorbed into electrolyte

with a rate constant k . The suitable electrocatalyst drives the ORR process towards direct 4e  reduction pathway, which
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requires high current efficiency and fewer peroxide species . The selectivity of the electrocatalyst is usually described

with the number (n) of transferred electrons, which can be calculated by K-L equation and RRDE measurement . The

number (n) was calculated according to Equation (2).

where I  is the disk current, I  is the ring current, and N is the collection efficiency (≈0.24–0.5).

3. Conclusion and Perspective

The ORR activity significantly determines the performance of various energy-conversion devices, such as polymer

electrolyte membrane fuel cells, microbial fuel cells and metal-air batteries. Therefore, biomass materials from different

sources have been widely considered as scalable and sustainable catalysts . That pore structure and active sites

affect the physicochemical properties and electrocatalytic performance has been emphasized, and thus giving a guideline

for rational design of biomass-derived carbon materials. Compared with the state-of-the-art Pt/C catalyst, biomass-derived

carbons exhibit some intriguing advantages of lower production cost, better methanol and CO tolerance, as well as better

stability . However, several great challenges still remain for designing active electrocatalysts that exhibit comparable

activity to Pt/C in acidic environment.

Although biomass-derived carbon electrocatalysts show excellent ORR activity in RDE measurements, it is still difficult to

integrate such catalysts into energy conversion devices, especially in H -O  fuel cells. Biomass materials are highly

abundant and economical, but there has not been much progress yet in large-scale applications. Using biomass-derived

carbon materials as substrates to reduce the noble metal loading is a promising strategy, which can simultaneously

enhance the electrocatalytic activity and electrochemically active surface area. Here, we have demonstrated that the

rational design of pore structure and active site plays a crucial role for synthesizing biomass-derived carbon

electrocatalysts with satisfactory physicochemical and electrochemical properties. It is believed that developing effective

and green synthetic methods will be a promising strategy to achieve more sustainable platforms.

On the other hand, in order to increase the competitiveness of biomass-derived carbon electrocatalysts for ORR,

enhancing the intrinsic activity through optimizing active sites is urgently required. Consequently, understanding the

catalytic mechanism of active sites and the relationship between mass transfer and pore structure for ORR process is

important . The in-depth investigation on these mechanisms helps to decide what types of biomass precursors should

be chosen and what preparation methods should be performed. With the rapid development of materials science and

technology, the community should further broaden the practical applications of biomass-derived carbon electrocatalysts in

ORR-related devices, such as water splitting, supercapacitors , lithium-ion batteries , and CO  reduction, etc.

In this way, large volumes of biomass and biowaste can be truly turned into a valuable resource and a sustainable society

can be really established.
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