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Agronomic biofortification is the strategy to enhance the micronutrient contents in the edible parts of food crops

through the application of mineral fertilizers. Agronomic biofortification can enrich crops with multiple elements, but

the most common ones are Fe, Se, Zn, and I. It may be a suitable approach to reach resource-poor rural

populations, provided they have access to chemical fertilizers. Soil-to-plant transfer and the accumulation of

minerals in the edible portion of food crops determine the success of biofortification. In addition, the bioavailability

of minerals from biofortified crops in the body influences the effectiveness of biofortification programs.

agronomic biofortification  dietary intake  effectiveness  fertilizers

1. Mineral Fertilizer Manufacturing

One of the major challenges of agronomic biofortification as a strategy is the manufacturing of fertilizers containing

a suitable quantity of mineral micronutrients, especially in many developing countries, where most fertilizer is

imported. Strategies aiming to reduce MNDs are likely to be more effective where the intervention is case-sensitive

in local situations . To produce a fertilizer blend for a specific location is likely to require the close involvement

of public and private fertilizer production and distribution sectors.

2. Mineral Fertilizer Application Method

There are two approaches for the application of mineral fertilizers—foliar and basal application. The two

approaches have their costs and benefits in terms of logistics, economic feasibility, and final grain mineral

concentration.

In the short term, foliar Zn applications are more effective than soil applications at increasing grain Zn

concentrations in wheat . For example, foliar Zn application to rice and wheat represents an effective

agronomic practice to enhance the grain Zn concentration up to 66%, while soil application has no effect . Soil

applications of Zn are less effective than foliar applications to increase grain Zn concentration. The study by Joy et

al.  indicated that soil Zn application led to increases in the median Zn concentrations in maize, rice, and wheat

grains of 23%, 7%, and 19%, respectively, while foliar application led to increases of 30%, 25%, and 63%,

respectively. The authors suggested that Zn fixation in the soil makes foliar applications more cost-effective than

soil applications; however, the deployment might be more complicated. Botoman et al.  reported that many

studies on soil Zn applications are underpowered to detect small increases in crop Zn concentration; they reported
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a 15% increase in maize Zn concentration as a result of 30 kg ha  elemental Zn application. A study from

Zimbabwe aimed at quantifying the potential health benefits of alleviating dietary Zn deficiency with soil-applied Zn

fertilizer and improved soil fertility management (ISFM) to increase maize grain Zn concentration reported that soil

Zn fertilizers were estimated to increase the dietary Zn supply from 9.3 to 11.9 mg Zn capita  day , reduce the

dietary Zn deficiency prevalence from 68% to 31%, and save 6576 DALYs lost per year. On the other hand, soil Zn

fertilizer, together with ISFM, is estimated to increase the dietary Zn supply from 9.3 to 12.5 mg Zn capita  day ,

reduce the dietary Zn deficiency prevalence from 68 to 25%, and save 7606 DALYs lost per year . Therefore, the

report indicates strong effects of other ISFM approaches on the effectiveness of soil-applied Zn.

One benefit of soil application of Zn fertilizer is its potential residual effects in subsequent cropping seasons. For

example, Narwal et al.  reported that soil application of Zn to wheat has a significant effect for multiple years and

could be more effective and economical for wheat in the long run as compared to foliar application. Another study

reported that soil application of 28 kg ha  ZnSO  fertilizer was an effective strategy to correct soil Zn deficiencies

for about 7 years . Similarly, Frye et al.  reported the residual effect ranging from 4 to 5 years as a result of

soil application of 34 kg ha  ZnSO  fertilizer. Similar researchers reported that soil application of ZnSO  ranging

from 18 to 28 kg h  is adequate to correct Zn deficiency in plants for four to seven years . Therefore, the

argument is, if the application of Zn fertilization is planned for more than one season, basal application could be a

more cost-effective method due to its residual effect, whereas foliar application may provide the highest grain Zn

concentration for a single production season.

Some studies have indicated that the combined application of soil and foliar Zn and Fe are more effective than a

single soil or foliar application. The results indicate an increase from 25 to 100% grain mineral content due to

combined soil and foliar fertilization application . However, it is very crucial to consider the soil type

effect since the combined foliar and basal application method of Zn on wheat is reported to highly depend on the

soil type .

Ngigi et al.  suggested that foliar application of Se was more effective than soil application for maize and beans.

However, it is important to consider that Se can act both as an antioxidant and a pro-oxidant, and in its

concentrated form, Se is toxic , therefore, blended or granular Se applied to soils is the only safe approach for

farmers. Ros et al.  argued that soil application of Se could result in similar responses to foliar-applied Se

fertilizer, and the effects of soil-applied Se lasted longer than foliar-applied Se since residual effects were observed

for up to 4 years. Chilimba et al.  also reported no significant difference between basal and foliar application of

Se. They reported for each gram of Se ha  applied, the Se concentration in maize grain increased by 11–29 µg

Se kg  and by 11–33 µg Se kg  for foliar and basal applications, respectively. The only comprehensive

nationwide experience that has deployed Se fertilization with basal application, in Finland, reported a 15-fold

increase in crop Se content .

Soil application of Fe usually has no or only limited residual effects, as Fe  is rapidly converted into Fe  in soils;

therefore, foliar application has been considered the most effective method, especially for plants that develop grain

months after germination . However, other studies found that neither soil nor foliar application of Fe
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fertilization was an effective method to enhance wheat, barley, or oat Fe concentrations . In contrast, regular

foliar Fe application could result in a potential environmental hazard . Manzeke-Kangara et al.  and Aciksoz et

al.  argued that the efficiency of soil Fe application is more dependent on other factors, especially the integration

of N fertilization and ISFM, compared to the Fe fertilizer application method (foliar or basal).

Studies have suggested the potential of a multi-mineral agronomic biofortification strategy to address multiple

mineral deficiencies, based on a site-specific biofortification strategy. Mao et al.  reported that combined Se, Zn,

and I fertilizers were as effective as singly-applied fertilizers when applied to maize, soybean, potato, and cabbage.

This suggests that multi-mineral agronomic biofortification has the potential to address multiple MNDs

simultaneously. However, knowledge about the elemental antagonistic and synergetic interaction effect is very

critical. Pahlavan-Rad and Pessarakli,  reported 8% and 13% increases in wheat grain Fe and Zn

concentrations, respectively, as a result of Fe and Zn interaction in their study on the combined application of Fe

and Zn fertilization. Even though the mechanism of Zn and Fe interaction is not well understood , it has been

reported that Zn treatment resulted in Fe accumulation in soybean roots and increased root-to-fruit Fe translocation

in tomato plants .

3. Mineral Interaction Effect

Interactions between phosphorus (P) and Zn and between P and Fe in soils and plants have long been recognized

and well documented. Studies have reported that high soil P levels can negatively affect Zn and Fe uptake by

crops by inhibiting the mycorrhizal colonization of roots and resulting in impaired nutrient uptake . Multiple

studies have reported that P deficiency in soil results in a higher accumulation of Zn, whereas Zn deficiency in soil

leads to a higher accumulation of P in plants . Similarly, Fe deficiency stimulates the absorption of P in

both roots and shoots . Erdal  reported that soil Zn application enhances wheat grain Zn, and at the

same time, significantly reduces grain P concentration. Another study also reported the association between Zn

fertilization and a reduction in the phytic acid in rice grain, ranging from 14.8 to 30.4% . These findings suggest

that agronomic biofortification with Fe and Zn might also be a useful strategy to reduce antinutritional factors, such

as phytate, in addition to increasing the grain mineral concentration.

A study that employed a factorial design involving the application of N up to 60 kg ha  and Zn up to 10 kg ha  on

pearl millet indicated that the highest grain Zn concentration was observed at the application of 20 kg N ha  and 5

kg Zn ha  . Similarly, the Zn uptake rate was enhanced by 4-fold due to the increased N application .

Similarly, multiple studies have indicated that N significantly enhances grain Zn  and Fe 

concentrations. Nitrogen can increase the activity of transporter proteins and nitrogenous compounds, like

nicotianamine, which helps to maintain Zn root uptake and shoot translocation , and by increasing the activity

and abundance of Fe transporter proteins, such as yellow stripe 1 (YS1), in root cell membranes , which

positively affects the root uptake and shoot transport of Fe. Similarly, the Se concentration of rice grains increased

by 54.6% as a result of a combined Se and N application compared to only Se application as a fertilizer . These

findings suggest the application of Zn, Fe, and Se as a fertilizer is more effective when they are applied along with

N fertilization and ISFM.

[26][27]

[28] [29]

[26]

[2]

[24]

[30]

[31]

[32][33]

[34][35][36]

[37][38][39][40] [41]

[15]

−1 −1

−1

−1 [42] [43]

[44][45] [26][29][46][47]

[47][48]

[49][50]

[51]



Potential Challenges to Agronomic Biofortification | Encyclopedia.pub

https://encyclopedia.pub/entry/48322 4/9

4. Environmental Impact

Uncontrolled and excessive mineral fertilizer use could cause contamination risk in the environment from the

minerals of interest. It has been reported that about 28 tons of extra Cu per year is released into the soil in parts of

the United Kingdom as a result of Cu fertilizer . Furthermore, the long-term application of mineral fertilizer was

reported to adversely affect important rhizospheric microorganisms that play major roles in plant nutrition and

health . In such cases, it is recommended to use nanoparticle fertilization, which potentially reduces the

release of excessive mineral fertilizers into the environment. For instance, the application of Fe oxide nanoparticles

on wheat , Zn oxide on maize , and Se nanoparticles on soybean  effectively improved grain Fe, Zn, and

Se concentrations, respectively, without extra mineral release into the environment.
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