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Rehabilitation consists of an iterative process involving assessments and specialized training, which unfortunately are

often limited by healthcare centres’ restricted resources. To overcome this limitation, wearable technology should be an

important, potential and valid solution to objectively assess and monitor patients inside and/or outside clinical

environments. The information extracted by the use of this technology should provide a more detailed evaluation of the

impairment, also allowing the identification of rehabilitation therapies.
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1. Introduction

Biomedical wearable sensors allow the measurement of physiologic parameters in a continuous, real-time and non-

invasive way, including a wide range of advances in electrocardiogram (ECG), electromyogram (EMG) and

electroencephalogram (EEG)-based sensing platforms . These platforms and their related sensors have different

diagnostic and monitoring applications . For example, physiological monitoring could support both diagnosis and

ongoing treatment for many diseases involving movement disorders . Furthermore, home-based motion sensing could

assist the subject in rehabilitation path and falls prevention, helping him/her improve his/her independence and lifestyle .

Moreover, sensors acquire and analyze biomedical signals to monitoring the effectiveness of home-based rehabilitation

therapies, for example, in stroke survivors, in patients undergoing surgery, in subjects involved in accidents or to

evaluating the use of mobility assistive devices in older adults . Moreover, the monitoring of physiological signals

and parameters could also be a good support in many clinical and non-clinical applications, e.g., in sporting activities to

evaluate performance and physical condition of athletes , in postural control to correct stability, or in a physiotherapy

context after injury . Generally, the measurement of physical activity parameters aids in guiding many types of

applications; e.g., (i) monitoring physical activity during rehabilitation or in a physical therapy setting; (ii) evaluating the

success of an intervention and tracking physical activity post-surgery; (iii) evaluating patient mobility; (iv) all (risk)

detection; and (v) monitoring physical activity in patients with chronic diseases and disabilities involving movement

disorders. Most recently, the coronavirus disease 2019 (COVID-19) pandemic has affected access to standard

rehabilitation services, highlighting the need to define new rehabilitation perspectives as telemedicine . During this

period, the rehabilitation concept considerably changed: the need for home medical assistance for a new idea of

rehabilitation phase in older people both with and without COVID-19, in patients affected by neuro-motor disease, in

subjects with limited movements after injury or accident and athletes is becoming essential to help these people in

maintaining their daily activities. In this context, tele-rehabilitation became an effective and well-accepted method of

providing outpatient and community rehabilitation services to support family and caregivers in the assessment of the

home environment, patient monitoring and outpatient therapies . In emergencies such as the COVID 19

pandemic, access to health services is restricted due to the risk of infections and limitations of health resources . For

this reason, telemedicine services have proved extremely useful by providing home monitoring and rehabilitation solutions

and thus minimizing the risk of infection. Survivors of COVID-19-associated pneumonia may experience a long-term

reduction in functional capacity and muscle strength. Telerehabilitation (TR) programs could be effective for patients after

COVID-19 . However, few studies have assessed whether telerehabilitation for COVID-19 patients is an effective tool.

In , telerehabilitation programs consist of home exercises for aerobic reconditioning, muscle strengthening, and

healthy lifestyle education. The physiotherapist (PT) contacts the patient via video call via a dedicated platform to monitor

progress. Moreover, physicians can add chest physiotherapy exercises for lung expansion and strengthening of the

respiratory muscles. In these programs, a pulse oximeter as a monitoring device is also used.
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Many healthcare devices for rehabilitation provide biosignals, such as blood pressure, blood glucose levels, EEGs, ECGs

and EMGs . The main bioelectrical signals are generated by the heart, the brain and the muscles, producing ECGs,

EEGs and EMGs, respectively. ECG, EEG and EMG signals are characterized by low amplitude (generally, expressed in

mV—millivolts) and low operating frequencies, from frequency Hz to some kHz range . The acquisition, analysis and

interpretation of these signals are fully reported in the literature . Physical activity is often

associated with the cardiovascular and muscular systems. Therefore, electrical signal variations cause ECG and EMG

during athletic activities, and they are essential and commonly adopted parameters for healthcare management and

rehabilitation protocols. In particular, EMG signal is the typical clinical recording method used to diagnose and monitor

neuromuscular behaviours. Surface EMG (sEMG) allows extraction of information on muscle activation during a

movement or effort, identifying impairment and functional alteration useful in clinical evaluation . This information can

be presented in different forms (e.g., amplitude, timing, morphology, muscle fibre conduction velocity or muscle

coordination). They are relevant in many fields, from orthopaedics and neurorehabilitation to movement analysis in

exercise and sport or aging . This review aims to focus on EMG signal acquisition devices, also combined with other

biosignals ECG and EEG, in rehabilitation pathways, especially for telemedicine applications. This contribution is

proposed as a review by addressing questions such as (i) what are the most recent contributions in literature? (ii) what are

the commonly used medical devices? (iii) how do these contributions and medical devices support physiological

monitoring in rehabilitation? and (iv) what are the future directions and opportunities for EMG signal acquisition and

analysis in a rehabiliation context? Many reviews are presented in the literature regarding biosignal acquisition devices for

rehabilitation applications, but to the best of our knowledge, EMG signal has been considered only in specific context for

single review. This review is thus a general but detailed comprehensive overview of EMG monitoring systems aiming to

resume and to discuss the different and important solutions of EMG applications in different rehabilitation contexts. 

2. Wearable Devices for Rehabilitation

Generally, these systems present heavy drawbacks regarding the limitation in acquiring and sending data at high rates,

the low energy efficiency and the restricted portability due to their large size and weight. To overcome these limitations

and make these systems more efficient, wearable devices are becoming essential in daily and clinical practice to allow

continuous monitoring of human activity in terms of changes in biological signals. The increasing trends of wearable

devices and the multimodal acquisition of different biosignals are crucial for advancing disease-diagnosis and treatment.

Wearable devices perform activity monitoring through two main processes: (i) data acquisition and preprocessing; (ii)

transmission, analysis and classification of acquired data. Signal preprocessing, for example, includes amplification and

filtering stage; signal analysis, instead, involves averaging or extraction of relevant features to be used as training data for

classifier .

In literature, many contributions are available concerning the design and the implementation of wearable sensors aiming

to define platforms of multimodal acquisition and recognition of different biosignals, such as electroencephalography,

electromyography and electrocardiography, for continuous and automatic monitoring of human health status, improving

diagnosis, follow-up and therapeutic strategies of several disorders. Wearable devices usually involve smart sensors to

detect and monitor a set of physiological parameters aiming to support their continuous monitoring for diagnostic,

therapeutic and control purposes . The great demand of the aging population for healthcare management needs the

use of these wearable medical devices to monitor personal health information in real-time to prevent diseases and

emergency health risks. Today, many wearable healthcare devices provide biosignals, such as EEGs, ECGs, EMGs,

blood pressure or blood glucose levels. Electrical signal variations cause ECG and EMG during muscular activities, and

they are important and commonly adopted parameters for healthcare management and rehabilitation protocols.

Liu et al. in  propose a portable and wireless acquisition system to acquire physiological signals. The system mainly

consists of a portable device, a graphic user interface (GUI) and an application program for displaying the signals on a

computer or a smart device. This device is characterized by eight measuring channels, a powerful microcontroller unit, a

lithium battery, Bluetooth 3.0 data transmission and a built-in 2 GB flash memory. The results show that as this system

can measure signals in real-time, supporting physicians and researchers can perform experiments collecting physiological

signals of interest.

A summary of these contributions about wearable monitoring systems chosen among the papers in the literature

published in the last 5 years is made in Table 1 .

Table 1. Summary of selected wearable monitoring system included in this review.

[22]

[23]

[24][25][26][27][28][29][30][31]

[32][33]

[34][35]

[36]

[37]

[38]



Authors Signals Channels Platform Characteristics Features

Tran et al., 2021 Bio-
potentials 4 channels

Four-channel neural recording
analog front-end composed by a
low-noise amplifier (LNA),
a programmable gain amplifier
(PGA) and buffers; 4-to-1
multiplexer (MUX) and analog-to-
digital converter (ADC)

Programmable gain from 45 dB
to 63 dB, input-referred noise of
3.16 μVRMS within the 10 kHz
bandwidth, noise efficiency
factor of 2.04, power efficiency
factor of 4.16, power
consumption of 2.82 μW per
channel powered from 1 V supply
voltage

Yin et al., 2021

Bio-
potentials,
impedance
respiration

Single 1
channel

Oversampling and fast digital lock-
in technology, ADS1294R,
STM32F103RET6 for signal
processing

Improve the common-mode
rejection ratio (CMRR) and the
signal-to-noise ratio (SNR) of the
signal

Zhao et al., 2020 ECG/EMG N.A. Low-energy Bluetooth module
Wearable monitoring device,
software platform for data
analysis

Biagetti et al., 2020 Bio-
potentials 3 channels

Six electrodes, 24 bits of resolution
and a sampling rate up to 3.2 kHz
for each channel, Bluetooth Low
Energy wireless link

Wireless sensor, real-time
acquisition, maximization of the
available bandwidth, reliability of
the transmission

Nakamura et al.,
2020 ECG/EMG N.A. Analog front-end (AFE) Capacitive measurements

Liu et al., 2019 Bio-
potentials 8 channels

Powerful microcontroller unit,
lithium battery, Bluetooth 3.0 data
transmission and built-in 2 GB flash
memory

Portable device with a graphic
user interface (GUI) and an
application program for
displaying the signals on a
computer or a smart device

Park et al., 2018 Bio-
potentials

128
channels

Energy-efficient integrated circuit
architecture of a  -modulated 
 AFE with multi-shank neural probes
connected to individual AFEs

The  -  AFE is characterized by
a consume of each single-
channel AFE of 3.05 μW from 0.5
and 1.0 V supplies in an area of
0.05 mm  with 63.8 dB signal-to-
noise-and-distortion ratio and
3.02 noise efficiency factor

Raheem et al.,
2018

Bio-
potentials 2 channels Programmable gain amplifier (PGA)

and 10-bit  (SDM-ADC)

High impedance, power
consumption of 11 mW,
programmable gains from
52.6 dB to 72 dB and input
referred noise of 3.5 µV in the
amplifier bandwidth

Mazzetta et al.,
2018 EMG Differential

1 channel

32 bit ARM® Cortex®-M4, microSD,
Bluetooth 4.0, 592 mWh battery,
micro-USB connector, 30 × 30 × 15
mm dimensions, weight of 10 g

Power consumption,
compactness and energy
autonomy, wireless and
comfortably wearable

Biagetti et al., 2018 sEMG N.A.

Ultralight wireless sensing nodes,
base station for data transmission
through a 2.4 GHz radio link,
communication protocol designed
on top of the IEEE 802.15.4 physical
layer

Low-cost wearable wireless
system, user interface software
for viewing, recording
and analyzing data

Kast et al., 2017 Bio-
potentials

Bipolar 64
channels

Up to eight front-end acquisition
modules with synchronization
module, a separated universal serial
bus data-link to the computer and
an ADS1299

Raw data are analyzed and
stored on a personal computer or
a single-board computer

Sarker et al., 2017 ECG/EMG 8 channels 24 bit resolution/channel and 500
samples/s, IoT-based system

Compact and wearable portable
bio-signal acquisition device,
real-time data wireless
transmission, low energy
consumption

Li et al., 2017 ECG/EMG N.A.

150 mAh rechargeable Li-ion
battery, packaged into a 39 × 32 × 17
mm 3D printed small box, total
weight of 24.0 g, power
management circuit, dual power
supply for operational amplifiers

Wearable wireless non-contact
system, ultra-high input
impedance, feasibility of long-
term biopotential monitoring
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Authors Signals Channels Platform Characteristics Features

Senepati et al.,
2017 ECG/EMG N.A.

Band pass and band stop FIR filters,
Successive Approximation Register
(SAR) DAC, Spartan-3E FPGA and
0.18 μm CMOS TSMC technology

Area of 33,005 μm  area, power
consumption of 0.382 mW,
suppressing of baselines wander
and power line interference noise
(50/60 Hz)

Bhamra et al.,
2017 ECG/EMG N.A.

ASIC technology in a 0.18 μm CMOS
process, high-pass and low-pass
cutoff frequencies being 0.5–300 Hz
and 150 Hz–10 kHz, antialiasing
filter, successive approximation
register (SAR) analog-to-digital
converter (ADC), power
management

Wireless, programmable gain
from 38 to 72 dB, AFE and ADC
dissipation of 5.74 μW and 306
nW, measured input-referred
noise of 2.98 μVrms, noise
efficiency factor of 2.6, power
efficiency factor of 9.46, area of
the AFE of 0.0228 mm

Kim et al., 2016
Bio-
potentials,
PPG, BIA

N.A. CMOS technology, low-power and
multimodal analog front-end (AFE)

Wearable health monitoring, low
dimension and power
consumption

Mahmud et al.,
2016 ECG N.A.

Fully integrated analog front-end
(AFE), temperature sensor,
accelerometer, Bluetooth Low
Energy (BLE) module

Multiparameter real time
monitoring, small dimensions,
Android application, alerts

Piccinini et al.,
2016 ECG/EMG N.A.

ADS1294 Medical Analog Front End,
CC3200 microcontroller, two Li-ion
charged batteries

Portable solution, size physical
reduction, robustness in wireless
transmission, reliability in data
acquisition and processing

Lee et al., 2016 ECG/EMG N.A.
Mixed-signal processor system-on-
chip (SoC), Bluetooth Low Energy
(BLE) chip, 200 mAh battery

Wireless transmission, power
efficiency, 12 h of continuous
recording

Augustyniak et al.,
2016

Bio-
potentials

Single-
ended 5
channels

Programmable AFE ADAS1000, 24-
bit resolution analog-to-digital
converter with programmable data
rate up to 128 kHz

Wired and wireless body sensor
networks, configurable gain for
channel

3. Commercial Wearable Devices

Wearable portable systems aim to daily acquire and processes different health data, providing early detection of

pathological signs and improving the treatment and the continuous monitoring of disease. Many commercial EMG and

ECG sensors are available, and they are designed and created to satisfy different specifications. In this section, the

review proposes a description of the common commercial biosignal acquisition systems for physiological monitoring.

These systems have been chosen to be the most used devices in health practice presenting similar characteristics to be

compared.

Biometrics Ltd offers different data acquisition systems to collect analog and digital data from various sensors and are

available in wireless, portable and laboratory configurations. Wireless systems furnish total freedom of movement without

being constrained by wires . They are available in 2-, 4-, 8- and 16-channel configurations to acquire EMG signals by

using surface, small and lightweight sensors, allowing muscle activity readings to be smooth and robust with a range of up

to 30 m from its receiver. The main features of these types of sensors are (i) a bandwidth from 10 Hz to 250 Hz through to

10 Hz to 5000 Hz and (ii) a sensitivity for the peak to peak measurements ranging from +/− 60 mV to +/− 6000 mV .

Portable systems are comprehensive packages of sensors and instrumentation for static and dynamic measurements in a

clinical setting, a research centre, or at any remote location such as an office, workplace or home. Biometrics offers three

different versions of EMG sensors: (i) surface EMG sensors, (ii) wireless surface EMG sensors and (iii) surface EMG

amplifier.

Biosignalsplux represents an advanced wireless toolkit to collect and analyze reliable and high-definition biosignal data

. It offers a set of cabled and wearable sensors. The biosignalsplux electromyography (EMG) sensor is a high-

performance bipolar sensor with low noise for seamless muscle data acquisition. This sensor is designed to monitor

muscular activity, and the bipolar configuration is ideal for uncompromised low-noise data acquisition. The raw data output

provides medical-grade data enabling it to be used for advanced and highly accurate biomedical biomechanics and sports

research. Its main features are (i) bipolar differential measurement, (ii) pre-conditioned analog output, (iii) high signal-to-

noise ratio and (iv) medical-grade raw data output. It is also ready-to-use, and it is miniaturized. The wireless single-

channel EMG device for real-time muscle sensing is muscleBAND. It is an integrated single-channel EMG sensor with a
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triaxial accelerometer and magnetometer for real-time acquisition of muscle activity and motion data with an integrated

dual Bluetooth module. This sensor allows data acquisitions with up to 16-bit resolution at up to 1000 Hz sampling rate,

with the internal battery providing enough power for continuous data streaming.

Delsys proposes complete wireless EMG-based solutions for monitoring human movement in research, clinical and

educational settings . These solutions are composed of (i) research, mobile and lite systems, (ii) EMG sensors, (iii)

mobile software and (iv) software for devices integration. The most used EMG sensor is Trigno Avanti Sensor, which can

capture muscle activity and movement data accurately. It is designed to work with all Trigno systems, and it is

characterized by (i) patented technology, (ii) improved RF performance, (iii) cable-free design, (iv) selectable EMG

bandwidth settings and (v) on-board signal processing. It also allows differential EMG input acquisition in a very small

dimension and weight. Trigno Research+ is a high-performing device designed to make EMG signal detection reliable and

easy, offering a full set of physiological and biomechanical monitoring tools to simplify complex research and provide the

highest quality data. Proprietary RF protocol guarantees synchronization between all sensors and allows data

transmission from Trigno wireless sensors to a Trigno base station. Table 2 reports the main characteristics of the

selected wearable monitoring systems.

Table 2. Main characteristics of the commercial wearable monitoring systems.

Features Biometric Shimmer Biosemi BTS
Bioengineering

Biosignal
Plux BITalino Delsys

Type of
sensor

Wireless EMG
Sensor

Shimmer3
EMG Unit ActiveTwo FreeEMG 1000

H O

Electro-
myography
Sensor

Electro-
myography
Sensor

Trigno Avanti
Sensor

Size (mm ×
mm × mm) 42 × 24 × 14 65 × 32 × 12 120 × 150

× 190
Probes: 41.5 ×
24.8 × 14

28 × 70 ×
12 12 × 27 27 × 37 × 13

Weight 17 g 31 g 1.1 kg 13 g—battery
included 25 g N.A. 14 g

# channels 1 2 8 up to 256 1 1 1 1 differential
input

Input
impedance >100 Mohms N.A. >100 M @

50 Hz   >100
GOhm

10/7.5
GOhm/pF  

Input range +/−6 mV
Approx. 800
mV @ gain =
6

+262 mV
to −262
mV

N.A. Up to  10
mV

±1.64 mV
@ VCC =
3.3 V

11 mV/22 mV
rti

Gain +/−60 mV to
+/−6000 mV

1,2,3,4,6,8,12
(software
configurable)

N.A. N.A. 1000 1009 11 mV/22 mV
rti

CMRR
>96 dB
(typically 110
dB) @ 60 Hz

N.A. >90 dB @
50 Hz N.A. 100 dB 86 dB <−80 dB

Consumption N.A. N.A.
4 Watt @
280
channels

N.A.  1 mA  0.17 mA N.A.

Bandwith 0–250, 470,
950, 5000 Hz 8.4 kHz

Up to DC
—3200 Hz
@ –3 dB

N.A. 25–500 Hz 25–482 Hz 10–850 Hz 20–
450 Hz

Data
transmission Wireless

Bluetooth
Radio – RN-
42

Fiber optic Wireless IEEE
802.15.4

Bluetooth
Low
Energy

N.A.

2.400-2.483
GHz ISM
Band,
Proprietary
RF Protocol -
BLE V4.2

Resolution N.A. 24 bit 24 bit 16 bit 12 bit N.A. 16 bit

Sample rate N.A.

125, 250, 500,
1000, 2000,
4000, 8000
SPS

2048 Hz–
4096 Hz–
8192 Hz–
16,384 Hz

N.A. N.A. N.A. 4370 sa/sec

[42]
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Features Biometric Shimmer Biosemi BTS
Bioengineering

Biosignal
Plux BITalino Delsys

Battery type
and life

Rechargeable
Li-ion
Polymer, Up
to 8 h

450 mAh
rechargeable
Li-ion battery

Battery
power with
>10 h @
144
channels,
>72 h @ 16
channels

Battery Li-Po,
Up to 6 h N.A.

Battery Li-
Po 700
mAh

Rechargeable
Li-Po Battery
Up to 8 h
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