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Hyperspectral imaging is an incorporation of the modern imaging system and traditional spectroscopy technology.

Unmanned aerial vehicle (UAV) hyperspectral imaging techniques have recently emerged as a valuable tool in agricultural

remote sensing, with tremendous promise for many application such as weed detection and species separation
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1. Hyperspectral Remote Sensing: A Brief Overview

According to Weiss et al. , agriculture monitoring from remote sensing is a vast subject that has been widely addressed

from multiple perspectives, sometimes based on specific applications (e.g., precision farming, yield prediction, irrigation,

weed detection), remote sensing platforms (e.g., satellites, unmanned aerial vehicles—UAVs, unmanned ground vehicles

—UGVs), or sensors (e.g., active or passive sensing, wavelength domain) or specific locations and climatic contexts (e.g.,

country or continent, wetlands or drylands). Campbell and Wynne  defined remote sensing as the application of

acquiring information regarding the Earth’s land and water surface by utilising images obtained from an overhead

perspective, implementing electromagnetic radiation in one or more regions of the electromagnetic spectrum, reflected or

emitted from the Earth’s surface. Hyperspectral remote sensing involves extracting information from the objects or scenes

that lie on the Earth’s surface due to radiance obtained by airborne or spaceborne sensors .

Generally, hyperspectral imaging is an incorporation of the modern imaging system and traditional spectroscopy

technology . According to Govender et al. , the evolution of airborne and satellite hyperspectral sensor technologies

has overcome the restraint of multispectral sensors since hyperspectral sensors assemble several narrow spectral bands

from the visible, near-infrared (NIR), mid-infrared, and short-wave infrared portions of the electromagnetic spectrum. The

hyperspectral sensor collects about 200 or more spectral bands, each only 10 nm wide  which allows the construction of

continuous spectral reflectance signatures while the narrow bandwidths element of hyperspectral data enable in-depth

examination of Earth surface characteristics which would disappear within the relatively coarse bandwidths acquired with

multispectral data. Hyperspectral data are usually assigned as hypercubes (see Figure 1) that contain two spatial

dimensions and one spectral dimension, regarding the characteristics of each hyperspectral image, comprising many

channels since there were bands—in contrast to grayscale or RGB images—that included only one or three channels,

respectively .
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Figure 1. Hyperspectral data cube structure .

The hyperspectral data cube in Figure 1 explained that Figure 1a A push-broom sensor on an airborne or spaceborne

platform acquire spectral data for a one-dimensional row of cross-track pixels named as scanline; Figure 1b Sequential

scan lines including spectra for each row of cross-track pixels are pilled to obtain a three-dimensional hyperspectral data

cube which in this illustration the spatial details of a scene are constituted by the x and y dimensions of the cube, while the

amplitude spectra of the pixels are projected to the z dimension; Figure 1c the three-dimensional hyperspectral data cube

can be analysed as a stack of two-dimensional spatial images whereas each is equivalent to a particular narrow

waveband. Usually, hyperspectral data cubes contain hundreds of stacked images; Figure 1d the spectral samples can

be marked for each pixel and discrimination of the features in the spectra deliver the primary mechanism for detection and

classification in a scene . Qian  stated that there were about three different methods in obtaining the hyperspectral

data regarding the type of imaging spectrometers such as dispersive elements-based approach, spectral filters-based

approach and snapshot hyperspectral imaging. In order to collect the hyperspectral images with different spatial and

temporal resolutions, the sensors used can, for example, be mounted on different platforms. Unmanned-aerial vehicles

(UAVs), airplanes, and close-range platforms . Table 1 shows the comparison of different types of hyperspectral

imaging platforms. Kate et al.  mentioned that hyperspectral sensors were utilised for providing information such as

airborne visible/infrared imaging spectrometer (AVIRIS), Hyperion, Hymap (from HyVista Castle Hill, Australia), and

airborne imaging spectroradiometer for applications (AISA). Table 2 below shows different types of hyperspectral sensors

used which are usually mounted on the aircraft and satellite .
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Table 1. Comparison of hyperspectral imaging platforms .

Parameters Satellites Airplanes Helicopters

Fixed-

Wing

UAVs

Multi-

Rotor

UAVs

Close-Range

Platforms

Operational

Altitudes
400–700 km 1–20 km 100 m–2 km <150 m <150 m <10 m

Spatial

coverage
42 km × 7.7 km ~100 km ~10 km ~5 km ~0.5 km ~0.005 km

Spatial

resolution
20–60 m 1–20 m 0.1–1 m

0.01–0.5

m

0.01–0.5

m
0.0001–0.01 m

Temporal

resolution
Days to weeks Depends on flight operations (hours to days)

Flexibility

Low (fixed by

repeating

cycles)

Medium (depend on availability of

aviation company)
High

Operational

complexity

Low (provide

final data to

users)

Medium (depend on users or

vendors)

High (operate by users with setting up the

hardware and software)

Applicable

scales
Regional–global Landscape-regional Canopy–landscape Leaf–canopy

Major limiting

factors
Weathers

Unfavourable flight height/speed,

unstable illumination conditions

Short battery

endurance, flight

regulations

Platform design

and operation

Image

acquisition

cost

Low to medium
High (typically need to hire an

aviation company to fly)
Large (due to area coverage)

Table 2. Type of hyperspectral sensors on aircraft and satellites .

Types of Sensors Producer Number of Bands Spectral Image (μm)

Satellite mounted hyperspectral sensors

FTHSI on

MightySat II
Air Force Research (OH, USA) 256 0.35–1.05

Hyperion on EO-
NASA Guddard

Space Flight Center (Greenbelt, MA, USA)
242 0.40–250
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Types of Sensors Producer Number of Bands Spectral Image (μm)

Aircraft-mounted hyperspectral sensors

AVIRIS

(airborne visible

infrared imaging

spectrometer)

NASA Jet Propulsion

Lab. (Pasadena, CA, USA)
224 0.40–2.50

HYDICE

(hyperspectral digital

imagery collection

experiment)

Naval Research Lab (Washington, DC, USA) 210 0.40–2.50

PROBE-1
Earth Search Sciences

Inc. (Kalispell, MT, USA)
128 0.40–2.50

CASI

(compact airborne

spectrographic

imager)

ITRES Research

Limited (Calgary, AB, Canada)
Over 22 0.40–1.00

HyMap Integrated Spectronics 100 la 200
Visible to thermal

Infrared

EPS-H

(environmental

protection system)

GER Corporation

VIS/NIR (76),

SWIR1 (32),

SWIR2 (32),

TIR (12)

VIS/NIR (0.43–1.05)

SWIR1 (1.50–1.80)

SWIR2 (2.00–2.50)

TIR (8–12.50)

DAIS 7915

(digital airborne

imaging spectrometer)

GER Corporation

(geophysical and

environmental

research imaging

spectrometer)

VIS/NIR (32),

SWIR1 (8),

SWIR2 (32),

MIR (1),

TIR (12)

VIS/NIR (0.43–1.05)

SWIR1 (1.50–1.80)

SWIR2 (2.00–2.50)

MIR (3.00–5.00)

TIR (8.70–12.30)



Types of Sensors Producer Number of Bands Spectral Image (μm)

DAIS 21115

(digital airborne

imaging spectrometer)

GER Corporation

VIS/NIR (76),

SWIR1 (64),

SWIR2 (64),

MIR (1),

TIR (6)

VIS/NIR (0.40–1.00)

SWIR1 (1.00–1.80)

SWIR2 (2.00–2.50)

MIR (3.00–5.00)

TIR (8.00–12.00)

AISA

(airborne imaging

spectrometer)

Spectral Imaging Over 288 0.43–1.00

2. Hyperspectral Remote Sensing Imagery (HRSI) Data Processing and
Analysing

2.1. Data Preprocessing

According to Weng and Xiaofei , due to the high-dimensional nature of hyperspectral data, as well as the resemblance

between the spectra and mixed pixels, hyperspectral image technology still confronts a number of issues, the most

pressing of which are the following: (1) Hyperspectral image data have high dimensionality. Because hyperspectral

images are created by combining hundreds of bands of spectral reflectance data gathered by airborne or space-borne

imaging spectrometers, the spectrum information dimension of hyperspectral images can also be hundreds of dimensions;

(2) missing labelled samples. In practical applications, collecting hyperspectral image data is rather simple, but obtaining

image-like label information is quite challenging. As a result, the categorization of hyperspectral pictures is sometimes

hampered by a shortage of labelled samples; (3) variability in spectral information across space. The spectral information

of hyperspectral images changes in the spatial dimension as a result of factors such as atmospheric conditions, sensors,

the composition and distribution of ground features, and the surrounding environment, resulting in the ground feature

corresponding to each pixel not being single; and lastly (4) image quality which is the interference of noise and

background elements during the acquisition of hyperspectral pictures which has a significant impact on the quality of the

data collected. The categorization accuracy of hyperspectral images is directly influenced by the image quality.

Hyperspectral images obtained by various platforms and sensors are usually presented in raw format which requires them

to be pre-processed (for example, atmospheric, radiometric, and spectral corrections) to rectify detailed information .

Assembling hyperspectral data is more intricate than multispectral and RGB sensors because its radiometric and

atmospheric calibration workflows are more involuted . Therefore, several steps were required for the hyperspectral

imaging processing procedure in order to obtain precise output . The processing of hyperspectral imaging signifies the

utilisation of computer algorithms. It includes tasks such as extracting, storing and falsifying information from visible near-

infrared (VNIR) or near-infrared (NIR) hyperspectral images. It also provides different information on processing and data

mining assignments (for example, analyse, classify, target detection, regression, and pattern identification) .

Hyperspectral imaging includes extensive data collection stored in pixels while each data particularly correlates to their

neighbours . Hyperspectral imaging also comprises the spectral-domain signal as each of the image pixels contains the

spectral information; thus, specific tools and approaches have been amplified for processing both spatial and spectral

information . This magnitude of data has led to the integration of chemometric and visualisation equipment to

competently mine for significant and detailed information . The ordinary hyperspectral image preprocessing procedure

is delineated in Figure 2 below .
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Figure 2. Hyperspectral image preprocessing workflow .

According to Burger and Geladi , numerous amounts of raw data produced from hyperspectral imaging devices contain

lots of errors that can be rectified by calibration. Spatial calibration is one of the steps that correlates each image pixel to

known units or features, bestowing information about the spatial dimensions and also rectifying the optical aberrations

(smile and keystone effects) . However, three conditions could prevail which invalidate calibration models which are: (1)

chemical or physical substitution in samples, (2) change of equipment due to inherent uncertainty or ageing parts and, (3)

environment/weather condition, for example, temperature or humidity . Lu et al.  mentioned that hundreds of bands

are common in hyperspectral photographs, and many of them are highly connected. As a result, dimension reduction is an

important step to consider while pre-processing hyperspectral images. Dimensionality reduction is a crucial pre-

processing step in hyperspectral image classification that reduces HSI’s spectral redundancy, resulting in faster

processing and higher classification accuracy. Methods for reducing dimensionality convert high-dimensional data into a

low-dimensional space while keeping spectral information . Hence, pre-processing is an important step in increasing

the quality of hyperspectral images and preparing them for subsequent analysis.

Basantia et al.  stated that hyperspectral imaging generates extensive data collection from a single sample and with

thousands of samples that require daily analysis. According to Tamilarasi and Prabu , in contrast to other statistical

techniques, hyperspectral image analysis uses physical and biological models to absorb light at certain wavelengths. For

example, air gases and aerosols could absorb light at specific wavelengths. Dispersion (adding an outside light source to

the sensor region of perspective) and absorption are examples of atmospheric diminution (radiance denial). As the

outcome, a hyperspectral sensor could not differentiate the radiance recorded with the imaging generated at other times

or locations. Hyperspectral image analysis techniques are derived from spectroscopy, which relates to the distinct

absorption or patterns of reflection of the context at different wavelengths of a certain material’s molecular composition.

This image must be subjected to appropriate atmospheric correction techniques in order to compare each pixel’s

reflection signature to the spectrum of known material; in laboratories and in “library” storage areas, known spectral

information of materials include soils, minerals and vegetation types.

2.2. Hyperspectral Image Classification

Hyperspectral imaging (HSI) is classified as supervised, unsupervised, and semi-supervised based on the nature of

available training samples. The supervised technique uses ground truth information (labelled data) for classification

whereas the unsupervised technique does not require any prior information . According to Wenjing and Xiaofei ,

support vector machines, artificial neural networks, decision trees and maximum likelihood classification methods are

examples of commonly used supervised classification methods. The basic process is to first determine the discriminant

criteria based on the known sample category and prior knowledge and then calculate the discriminant function. Therefore,

in supervised classification, Freitas et al.  stated that support vector machines can produce results that are similar to

neural networks but at a lower computing cost and faster rate, making them ideal for hyperspectral data analysis.

Unsupervised classification refers to categorization based on hyperspectral data spectral similarity, for example, clustering

without prior knowledge. As stated by Wenjing and Xiaofei , unsupervised classification can only assume beginning

parameters, build clusters through pre-classification processing, and then iterate until the relevant parameters reach the

permitted range since no prior knowledge is employed. Examples of unsupervised classification are K-means
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classification and the iterative self-organizing method (ISODATA). Lastly, is the semi-supervised classification which trains

the classifier using both labelled and unlabelled data. The semi-supervised learning paradigm has been successfully

utilized beyond hyperspectral imaging . It compensates for the lack of both unsupervised and supervised learning

opportunities. On the feature space, this classification approach uses the same type of labelled and unlabelled data.

Because a large number of unlabelled examples may better explain the overall properties of the data, the classifier trained

using these two samples has superior generalisation. Examples of semi-supervised classification are Laplacian support

vector machine (LapSVM) and self-training .

Therefore, hyperspectral imaging can be one of the potential techniques for automatic discriminations between crops and

weeds. These sensing technologies have been utilized in smart agriculture and made substantial progress by generating

large amounts of data from the fields. Machine learning modelling integrating features has also accomplished reasonable

accuracy in order to identify whether a plant is a weed or a crop. Table 3 shows the application of hyperspectral imaging

for the discrimination of crops from weeds by using machine learning.

Table 3. Hyperspectral imaging for discrimination of crops from weeds using machine learning .

No. Crop Weed Model
Optimal

Accuracy
Reference

1. Rice Barnyard grass, weedy rice RF, SVM 100%
Zhang et al.

(2019)

2. Maize
Caltrop, curly dock, barnyard grass,

ipomoea spp., polymeria spp.

SVM,

LDA
>98.35%

Wendel et al.

(2016)

3.
Soybean,

cotton
Ryegrass LDA >90%

Huang et al.

(2016)

4. Wheat Broadleaf weeds, grass weeds PLSDA 85%
Hermann et al.

(2013)

5.
Broadbean,

wheat
Cruciferous weeds ANN 100%

De Castro et al.

(2012)

6. Sugar beet
Wild buckwheat, Field Horsetail, Green

foxtail, Chickweed
LDA 97.3%

Okamoto et al.

(2007)

7. Wheat Musk thistle SVM 91% Mirik et al. (2013)

8. Maize C. arvenis RF >90% Gao et al. (2018)

RF—random forest; SVM—support vector machines; LDA—linear discriminant analysis; ANN—artificial neural network;

PLSDA—partial least square discriminant analysis.
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