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Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins.

Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal

physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or

two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of

enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted

crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function.

crosslink  dimerization  protein oxidation  dityrosine  photooxidation  Aggregation

Amyloid  Alzheimers / Parkinsons  Post-translational modification

1. Introduction

The formation of covalently linked peptides and proteins plays a key role in many biological processes, both

physiologically and pathologically. These can be formed intentionally, such as in the oxidative folding of nascent

proteins within mammalian cells in the endoplasmic reticulum or Golgi involving the generation of disulfide bonds

from two cysteine (Cys) residues and in the assembly of insect exoskeletons via the crosslinking of two tyrosine

(Tyr) residues, or as a result of accidental exposure to oxidizing species (low-molecular mass or enzymes) that

chemically link two protein sites. These crosslinks can be formed between different sites within the same molecule

(intramolecular or intrachain crosslinks), between two different chains in a single molecule (e.g., the interchain

crosslinks in mammalian insulins), or between two separate species (intermolecular crosslinks). Some of these

crosslinks play a key role in stabilizing or maintaining proteins structures and can be essential to functional activity

, whereas others have negative effects of biological function (e.g., altered turnover, lifetime or activity) . Whilst

some crosslinks appear to be benign and devoid of adverse effects and end up as targets of catabolic processes

(e.g., degradation by proteasomes, lysosomes, other proteases), others are strongly associated with adverse

effects and are implicated (in some cases, causally) in the development of pathologies (e.g., ).

2. Enzymatic Protein Crosslinking

Multiple enzymes can mediate the crosslinking of proteins, with a few key examples briefly summarized below.

Enzyme-generated crosslinks are critical to the formation of many three-dimensional structures as these provide

strength and rigidity, if biologically required. Examples include crosslinks formed within the extracellular matrix
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(ECM) of most, if not all, tissues, such as those formed between matrix proteins, and particularly collagens by the

copper-containing lysyl oxidase (LOX) and LOX-like (LOXL) enzymes . LOX oxidizes specific lysine (Lys) and

hydroxylysine residues to carbonyls that undergo subsequent reactions to crosslink collagens (e.g., types I and III)

and elastin . In contrast, the LOXL family of enzymes acts on collagen type IV and drives the assembly of

basement membranes . Other enzymes also contribute to collagen crosslinking in the ECM with peroxidasin, a

member of the heme peroxidase superfamily, mediating the formation of highly specific methionine (Met) to Lys

crosslinks within the NC1 domains on collagen via generation of the oxidant hypobromous acid (HOBr). This

species reacts rapidly with the Met residue to form an intermediate that then reacts with a suitably positioned Lys

residue  (see also below). This type of crosslinking has been reported across many species . Other

members of the peroxidase superfamilies (e.g., horseradish peroxidase, myeloperoxidase, laccase) can also

generate crosslinks via enzyme-mediated oxidation of substrates to radicals which then undergo radical–radical

coupling. A classic example is oxidative coupling of Tyr and a wide range of other phenols via phenoxyl radical

generation .

An overview of the crosslinks is presented in Figure 1.

Figure 1. Overview of crosslinks formed on proteins, their nature and mechanisms of formation.

3. One-Electron (Radical–Radical) Reactions

Dimerization of two radicals to form a new covalent bond is typically a very fast process due to the low energy

barriers for such reactions. Therefore, they are a major source of crosslinks in peptides and proteins when the

radical flux is high and there are limited competing reactions. Most carbon-centered protein radicals (P ) formed

from aliphatic side-chains by hydrogen–atom abstraction reactions react rapidly with O  at diffusion-controlled rates

(k ~ 10  M  s ) to give peptide or protein peroxyl radicals (P-OO ) . The rapidity of these reactions limits direct

reactions of two P , except in circumstances where the O  concentration is low. This is of biological relevance, as

hypoxia is a common phenomenon, with endogenous levels of O  being typically in the range 3–70 μM .
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However, lower concentrations are present in situations where demand is great (e.g., high metabolic rates) or

perfusion is poor (e.g., in the core of many solid tumors), thereby limiting P-OO  formation and allowing (P-P) dimer

formation . For the limited number of P , where reaction with O  is slow or modest, as is the case for Cys-

derived thiyl radicals (RS , k < 10  M  s  ), tryptophan (Trp) indolyl radicals (Trp , k < 4 × 10  M  s  )

and Tyr phenoxyl radicals (Tyr , k < 10  M  s  ), formation of disulfides (cystine) from two RS , di-tyrosine from

two Tyr , di-tryptophan from two Trp , and crossed dimers between these (e.g., Tyr–Trp) can be generated.

Light, particularly of wavelengths >~280 nm, which are not absorbed by the ozone layer, can penetrate significantly

into biological structures and be absorbed either directly by protein residues, particularly Trp, Tyr and cystine , or

by other species with high extinction coefficients in the long wavelength UV or visible regions. Energy absorption

by non-protein species can give rise to indirect protein oxidation via the formation of excited states (e.g., singlet

oxygen, O  and reactive triplets) and/or radicals . Direct UV absorption by proteins can form RS  from

homolysis of the –S–S– bond of cystine (with C-S cleavage being an alternative pathway), and Tyr and Trp radicals

by photo-ionization of these side-chains. These species can then give rise to crosslinks.

4. Radical–Molecule Reactions

Radical–molecule reactions appear to be a limited pathway for the formation of protein crosslinks, due to the

absence of double bonds to which radicals might add in proteins, and limited stability of adducts to aromatic rings.

Notable exceptions are the rare amino acids dehydroalanine (DHA; 2-aminoacrylic acid) and dehydroaminobutyric

acid (DHB; 2-aminocrotonic acid). These contain a double bond between the α- and β-carbons of the side-chain

and are non-proteinogenic species , with these being generated via elimination reactions of serine residues

(Ser), phospho-Ser and selenocysteine (Sec) residues (in the case of DHA) , and from threonine (Thr) and

phospho-Thr (in the case of DHB) . DHA can also be formed via cleavage of the carbon–sulfur bonds of the

disulfide cystine, via mechanisms involving RS  or nucleophilic elimination reactions .

Although radical addition to double bonds is typically rapid and energetically favorable due to low energy barriers,

these reactions are rare as the concentrations of both DHA and DHB (with the former more abundant) and the

radicals that might undergo addition with them are very low. Nevertheless, some examples are known for radicals

that have relatively long lifetimes and modest rates of reaction with O  (i.e., Cys thiyl, Tyr phenoxyl, Trp indolyl) .

5. Two-Electron (Molecule–Molecule) Reactions

Reactions between two molecules are typically much slower than between two radicals or radical–molecule

reactions. However, the concentration of the reactants is often much higher than for reactive intermediates, and

consequently, the overall rates of these reactions may be significant—and the yield of products greater—than for

the processes outlined above. These reactions are therefore major sources of protein crosslinks. The rate

constants for these reactions would be expected to vary enormously—though quantitative data is lacking for most
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systems—with some reactions involving unstable species (e.g., sulfenic acids (RSOH), S-nitrosothiols (RSNO),

unsaturated aldehydes/ketones, quinones) being relatively rapid (i.e., occurring over seconds/minutes).

6. Types of Crosslinks Detected within and between Proteins
and Peptides

The following sections and Table 1 summarize various types of crosslinks that have been detected within and

between peptides and proteins, the nature of these species, their reversibility, mechanisms of formation and,

subsequently, methods available to detect, identify, characterize and quantify these species.

Table 1. Examples of major non-disulfide protein crosslinks generated during non-enzymatic oxidative processes

and methodologies employed to characterize them.

a)

b)

c)

1)

2)

1)

2)

a)

b)

1)

Crosslinked
Residues Protein(s)

Chemical Nature and/or
Mechanism of Formation

of the Crosslink
Method(s) Refs

Tyr-Cys

Myoglobin

Galactose oxidase

Cysteine dioxygenase

Michael addition from

thiols (Cys) to oxidized

Tyr species (a)

Thioether bridge (C-S) (b

and c)

Mass
spectrometry (a)

X-ray
crystallography

(b, c)

Trp-Cys Human growth hormone (hGH)

Michael addition from N

(Trp indole) to DHA

(formed from Cys)

Thioether bridge (C-S)

Mass
spectrometry

Met-
Hydroxy-

lysine
Collagen IV

Formation of S=N bridge
(sulfilimine bond) induced
by peroxidasin/HOBr

Mass
spectrometry

Lys-Cys Transaldolase
Nitrogen–oxygen–sulfur
(NOS) link/redox switch

X-ray
crystallography

Cys-Ser Human growth hormone

Tyrosine phosphatase 1B

Formation of a vinyl

ether between Ser and

Cys that result in the

elimination of the thiol

group from Cys (a)

Mass
spectrometry (a)

X-ray
crystallography

(b)
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2)

Crosslinked
Residues Protein(s)

Chemical Nature and/or
Mechanism of Formation

of the Crosslink
Method(s) Refs

Sulfenyl amide (S–N

bridge) between Cys-OH

and main-chain amide of

Ser residue (b)

Cys-Phe hGH

Crosslink between
thioaldehyde from Cys and
dehydrophenylalanine
generated from Phe

Mass
spectrometry

Cys-DHA
Cys-DHB

Lens proteins (βB1, βB2, βA3,
βA4 and γS crystallins)

Nucleophilic addition from
Cys (GSH) to DHA or DHB

Mass
spectrometry

Tyr-Gly Insulin
Michael addition of primary
amines (N-terminal Gly) to
oxidized Tyr species

Mass
spectrometry

Trp-Gly
Matrilysin (Matrix
metalloproteinase 7)

Crosslink between 3-
chloroindolenine (3-Cl-Trp)
and the main-chain amide
adjacent to a Gly

NMR
spectroscopy

Tyr-His Insulin
Michael addition from His to
oxidized Tyr

Mass
spectrometry

Tyr-Tyr
(selected

data)

Isolated proteins including: α-
lactalbumin, caseins, glucose 6-
phosphate dehydrogenase,
lysozyme, fibronectin, laminins,
tropoelastin, cAMP receptor
protein, α-synuclein, calmodulin,
insulins, hemoglobin, human
Δ25 centrin 2.
Human lipoproteins
Human plasma proteins,
including those from people with
chronic renal failure
Human atherosclerotic lesions
Erythrocytes exposed to H O
Brain proteins (amyloid-beta and
α-synuclein) from Alzheimer’s
subjects
Lipofuscin from aged human
brain
Urine from people with diabetes
Human lens proteins

C–C and/or C–O crosslinks
via radical–radical reactions

Western blotting
UPLC/HPLC
with various

detection
methods

Mass
spectrometry
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e)

f)

g)

a)

b)

c)

Crosslinked
Residues Protein(s)

Chemical Nature and/or
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of the Crosslink
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Bacterial spore coat proteins
Parasite oocysts

Trp-Trp

α-Lactalbumin

Superoxide dismutase 1

(hSOD)

Lysozyme-hSOD

αB-Crystallin

Fibronectin

C–C or C–N crosslinks via
radical–radical reactions

Mass
spectrometry

Tyr-Trp

Cytochrome c peroxidase

α-Lactalbumin

Glucose 6-phosphate

dehydrogenase

Lysozyme

β-Crystallin

Human cataractous lenses

Fibronectin

C–C (or C–O and C–N)
crosslinks via radical–
radical reactions

X-ray
crystallography

(a)
Mass

spectrometry (b–
g)

His-His

Immunoglobulin G1

Immunoglobulin G4

N-Ac-His

Nucleophilic addition of His
to oxidized His

Mass
spectrometry

(a,b)
NMR (c)

His-Arg Ribonuclease A (RNAse)
Nucleophilic addition of Arg

to oxidized His
Mass

spectrometry
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6. Secondary Reactions of Crosslinks

In most biological systems, protein crosslinks, and particularly the formation of irreversible covalent crosslinks such

as di-Tyr, di-Trp and Tyr–Trp, are considered as ‘final’ oxidation products . However, over-oxidation of these

species is possible, particularly under conditions of extensive oxidative damage, or under environments with long-

term protein exposure to oxidants, where secondary one-electron oxidation with formation of radicals such as di-

Tyr , di-Trp , or Tyr–Trp  may occur. Such radicals can mediate similar reactions to those described above for Tyr

and Trp , including reaction with O  to produce oxygenated products (e.g., alcohols and hydroperoxides) and self-

reactions to generate trimers and oligomers. Thus, formation of tri-Tyr and pulcherosine crosslinks have been

detected in human phagocytes , while di-, tri- and tetra-Tyr have been reported in structural proteins of plant

parasitic nematodes . In addition, oligomers of Tyr (n = 2–8) have been reported in α-lactalbumin exposed to a

horseradish peroxidase–H O  system . Tri-Trp has been reported in trimers of hSOD1 triggered by CO  ,

while tri-Trp and a di-Trp hydroperoxide (di-Trp-OOH) were reported in solutions of free Trp and riboflavin

illuminated with a high-intensity 365 nm light-emitting diode .

In contrast, photo-oxidation (at 320 nm) of di-Tyr, in the presence of O , has been reported to occur via processes

involving O , singlet oxygen ( O ) and H O  . These observations were ascribed to the action of di-Tyr

crosslinks as photosensitizers that could induce photo-damage to other biomolecules . These findings suggest

that di-Tyr crosslinks may be able to extend oxidation processes, opening new pathways of reactions, though these

are only likely to be of major impact in systems with very extensive extents of oxidation. The scope and role of

these pathways is unexplored, as well as the ability of peroxides such as di-Trp-OOH to extend protein oxidation

(in line with the capacity of other hydroperoxides ).
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of the Crosslink
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His-Lys Immunoglobulin G1
Nucleophilic addition of Lys

to oxidized His
Mass

spectrometry

His-Cys Immunoglobulin G1
Nucleophilic addition of Cys

to oxidized His
Mass

spectrometry

Tyr-Lys

RNAse

Interferon beta-1a

Insulin

Michael addition of Lys to
oxidized Tyr

Mass
spectrometry
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7.1. Analysis of Changes in Molecular Mass by Electrophoresis and Size Exclusion
Chromatography (SEC)

Protein electrophoresis (e.g., SDS-PAGE) and SEC-derived methodologies are excellent tools to assess the

presence of crosslinked proteins in samples. Separation by electrophoresis is typically achieved through the use of

polyacrylamide gels with different pore sizes. Diverse strategies can be utilized with this approach, such as running

gels under native, denaturing and/or reducing conditions. This allows the investigation and differentiation of the

contributions of reducible intermolecular bonds (e.g., disulfides between two protein chains) from non-reducible

bonds (e.g., carbon–carbon bonds).

Whilst these techniques can provide information on the presence of intermolecular bonds, they rarely provide

information about the presence of intramolecular species. Moreover, data analysis needs to be carried out with

care, as multiple proteins may be present in each band/fraction from complex matrices.

7.2. Analysis of Protein Crosslinks by Western (Immuno-) Blotting and ELISA
Assays

The use of antibodies to investigate the formation of oxidation products, including di-Tyr, is a widely used strategy.

These are typically examined using immunoblotting or ELISA assays, with the former providing (limited) information

on the nature and identity of the proteins on which the crosslinks are present, and whether these are intramolecular

(in a monomer) or interchain species. However, there are few well-characterized antibodies against crosslinked

species, and these vary significantly in their specificity and selectivity, with some having significant cross-reactivity

with other materials. Furthermore, crosslinks buried within highly aggregated species may be poorly, or not,

recognized by (large) antibodies. Thus, appropriate control experiments are critical, and both positive and negative

data should be validated by alternative methods.

7.3. Direct Detection by Spectrophotometric and Fluorometric Assays

Some crosslinked species, as well as heavily aggregated proteins, can be monitored by spectrophotometry and

fluorescence spectroscopy. For example, turbidity changes in solutions can be used (in an approximate manner) to

monitor the time-course of protein crosslinking and aggregation . However, this approach does not provide

information on the type and nature of the crosslinked proteins and is useful only when there is extensive formation

of heavily aggregated species, as soluble dimers and oligomers do not contribute significantly to the turbidity of

solutions.

In contrast, fluorescence experiments can provide relatively specific data on crosslinks such as di-Tyr (excitation

and emission maximum at ~280 and ~410 nm, respectively) . Such data need to be interpreted with care,

particularly with intact proteins or complex systems, as other fluorescent or optically absorbing species (e.g., Tyr,

Trp, Trp-derived products, co-factors) may be present that distort excitation or emission processes.

7.4. HPLC/UPLC Methodologies
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These techniques can provide important quantitative data on both the consumption of the parent amino acid

residues, and product formation, including Trp- and Tyr-derived crosslinks .

7.5. Detection and Characterization of Crosslinked Proteins Using Other
Biophysical Approaches

Biophysical techniques including circular dichroism (CD), light scattering, small angle neutron scattering (SANS),

small angle X-ray scattering (SAXS), X-ray crystallography, NMR spectroscopy, and electron microscopy can

provide useful information on protein structure. These methods are sensitive to modified structures, supplying

valuable information on changes on morphology (i.e., mass, size and shape), secondary structure and solubility 

. Some of these can also yield data on increased electron density between residues, thus supporting the

presence of both intra- and intermolecular crosslinked species. This approach has been used in X-ray

crystallographic studies, to determine the exact sites of crosslinks in oxidized peroxiredoxin 5, thioredoxin 2 and

γS-crystallin, and to elucidate a covalent crosslink between Cys and Lys containing an N–O–S bridge .

However, most of these methods (with the exception of X-ray crystallography, NMR spectroscopy and cryogenic

electron microscopy) cannot provide a structure of sufficiently high-resolution to provide definitive identifications

and they must therefore be combined with other methodologies. Moreover, these methods are currently limited to

homogeneous (single protein) samples that are available in large quantities (mg amounts).

7.6. Mass Spectrometry (MS)-Based Detection and Structural Characterization of
Crosslinked Proteins

MS is a highly versatile technique for analysis of protein crosslinks that can be applied to (i) detect crosslinks and

quantify their abundance, (ii) localize the specific crosslinking sites within polypeptides and (iii) reveal the identity of

the crosslinked proteins. All of these questions cannot, however, be readily answered in a single experiment, and

careful consideration must be given to appropriate workflows for specific applications.

8. Crosslink Quantification

At present, there are few methods that allow absolute quantification of crosslink concentrations, with a major

limitation being the non-availability of pure standards, particularly from commercial sources. Thus, there is a

pressing need for further pure crosslink standards for quantitative analyses. Disulfides are a major exception,

together with di-Tyr (which is commercially available) and a few species generated via glycation reactions (e.g.,
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