

Oxidative Crosslinking of Peptides and Proteins

Subjects: **Biochemistry & Molecular Biology** | **Chemistry, Medicinal** | **Biophysics**

Contributor: Michael Davies

Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function.

crosslink

dimerization

protein oxidation

tyrosine

photooxidation

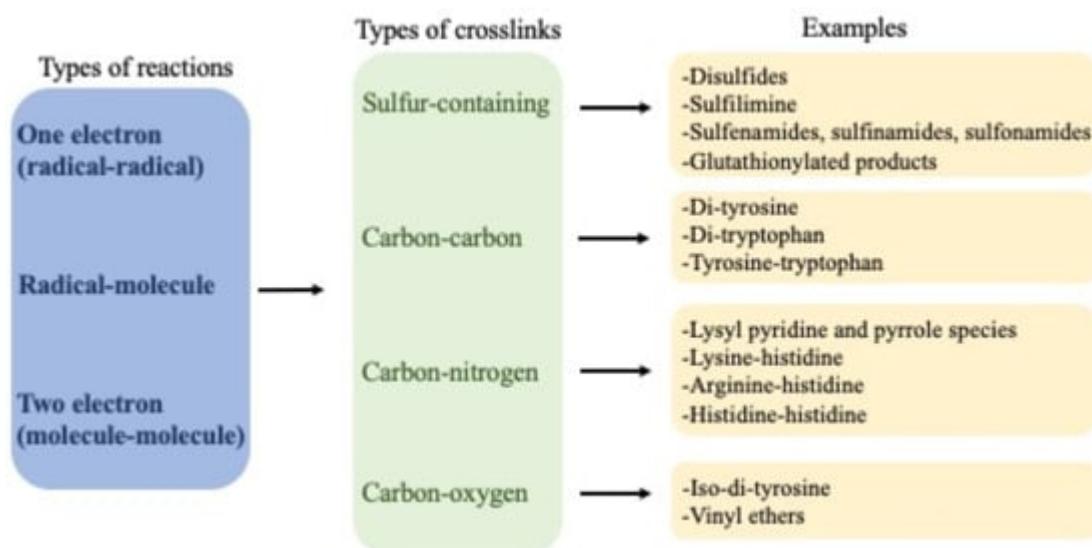
Aggregation

Amyloid

Alzheimers / Parkinsons

Post-translational modification

1. Introduction


The formation of covalently linked peptides and proteins plays a key role in many biological processes, both physiologically and pathologically. These can be formed intentionally, such as in the oxidative folding of nascent proteins within mammalian cells in the endoplasmic reticulum or Golgi involving the generation of disulfide bonds from two cysteine (Cys) residues and in the assembly of insect exoskeletons via the crosslinking of two tyrosine (Tyr) residues, or as a result of accidental exposure to oxidizing species (low-molecular mass or enzymes) that chemically link two protein sites. These crosslinks can be formed between different sites within the same molecule (intramolecular or intrachain crosslinks), between two different chains in a single molecule (e.g., the interchain crosslinks in mammalian insulins), or between two separate species (intermolecular crosslinks). Some of these crosslinks play a key role in stabilizing or maintaining proteins structures and can be essential to functional activity [1], whereas others have negative effects of biological function (e.g., altered turnover, lifetime or activity) [2]. Whilst some crosslinks appear to be benign and devoid of adverse effects and end up as targets of catabolic processes (e.g., degradation by proteasomes, lysosomes, other proteases), others are strongly associated with adverse effects and are implicated (in some cases, causally) in the development of pathologies (e.g., [3][4]).

2. Enzymatic Protein Crosslinking

Multiple enzymes can mediate the crosslinking of proteins, with a few key examples briefly summarized below. Enzyme-generated crosslinks are critical to the formation of many three-dimensional structures as these provide strength and rigidity, if biologically required. Examples include crosslinks formed within the extracellular matrix

(ECM) of most, if not all, tissues, such as those formed between matrix proteins, and particularly collagens by the copper-containing lysyl oxidase (LOX) and LOX-like (LOXL) enzymes [5]. LOX oxidizes specific lysine (Lys) and hydroxylysine residues to carbonyls that undergo subsequent reactions to crosslink collagens (e.g., types I and III) and elastin [5][6][7][8]. In contrast, the LOXL family of enzymes acts on collagen type IV and drives the assembly of basement membranes [5][9]. Other enzymes also contribute to collagen crosslinking in the ECM with peroxidin, a member of the heme peroxidase superfamily, mediating the formation of highly specific methionine (Met) to Lys crosslinks within the NC1 domains on collagen via generation of the oxidant hypobromous acid (HOBr). This species reacts rapidly with the Met residue to form an intermediate that then reacts with a suitably positioned Lys residue [10][11] (see also below). This type of crosslinking has been reported across many species [12]. Other members of the peroxidase superfamilies (e.g., horseradish peroxidase, myeloperoxidase, laccase) can also generate crosslinks via enzyme-mediated oxidation of substrates to radicals which then undergo radical–radical coupling. A classic example is oxidative coupling of Tyr and a wide range of other phenols via phenoxyl radical generation [13][14][15].

An overview of the crosslinks is presented in **Figure 1**.

Figure 1. Overview of crosslinks formed on proteins, their nature and mechanisms of formation.

3. One-Electron (Radical–Radical) Reactions

Dimerization of two radicals to form a new covalent bond is typically a very fast process due to the low energy barriers for such reactions. Therefore, they are a major source of crosslinks in peptides and proteins when the radical flux is high and there are limited competing reactions. Most carbon-centered protein radicals (P^{\bullet}) formed from aliphatic side-chains by hydrogen–atom abstraction reactions react rapidly with O_2 at diffusion-controlled rates ($k \sim 10^9 M^{-1} s^{-1}$) to give peptide or protein peroxy radicals ($P-OO^{\bullet}$) [16]. The rapidity of these reactions limits direct reactions of two P^{\bullet} , except in circumstances where the O_2 concentration is low. This is of biological relevance, as hypoxia is a common phenomenon, with endogenous levels of O_2 being typically in the range 3–70 μM [17].

However, lower concentrations are present in situations where demand is great (e.g., high metabolic rates) or perfusion is poor (e.g., in the core of many solid tumors), thereby limiting P-OO[•] formation and allowing (P-P) dimer formation [18]. For the limited number of P[•], where reaction with O₂ is slow or modest, as is the case for Cys-derived thiyl radicals (RS[•], $k < 10^7 \text{ M}^{-1} \text{ s}^{-1}$ [19]), tryptophan (Trp) indolyl radicals (Trp[•], $k < 4 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ [20][21]) and Tyr phenoxy radicals (Tyr[•], $k < 10^3 \text{ M}^{-1} \text{ s}^{-1}$ [22]), formation of disulfides (cystine) from two RS[•], di-tyrosine from two Tyr[•], di-tryptophan from two Trp[•], and crossed dimers between these (e.g., Tyr–Trp) can be generated.

Light, particularly of wavelengths $>\sim 280 \text{ nm}$, which are not absorbed by the ozone layer, can penetrate significantly into biological structures and be absorbed either directly by protein residues, particularly Trp, Tyr and cystine [23], or by other species with high extinction coefficients in the long wavelength UV or visible regions. Energy absorption by non-protein species can give rise to indirect protein oxidation via the formation of excited states (e.g., singlet oxygen, ¹O₂ and reactive triplets) and/or radicals [23]. Direct UV absorption by proteins can form RS[•] from homolysis of the –S–S– bond of cystine (with C–S cleavage being an alternative pathway), and Tyr and Trp radicals by photo-ionization of these side-chains. These species can then give rise to crosslinks.

4. Radical–Molecule Reactions

Radical–molecule reactions appear to be a limited pathway for the formation of protein crosslinks, due to the absence of double bonds to which radicals might add in proteins, and limited stability of adducts to aromatic rings. Notable exceptions are the rare amino acids dehydroalanine (DHA; 2-aminoacrylic acid) and dehydroaminobutyric acid (DHB; 2-aminocrotonic acid). These contain a double bond between the α - and β -carbons of the side-chain and are non-proteinogenic species [24], with these being generated via elimination reactions of serine residues (Ser), phospho-Ser and selenocysteine (Sec) residues (in the case of DHA) [24], and from threonine (Thr) and phospho-Thr (in the case of DHB) [25]. DHA can also be formed via cleavage of the carbon–sulfur bonds of the disulfide cystine, via mechanisms involving RS[•] or nucleophilic elimination reactions [24].

Although radical addition to double bonds is typically rapid and energetically favorable due to low energy barriers, these reactions are rare as the concentrations of both DHA and DHB (with the former more abundant) and the radicals that might undergo addition with them are very low. Nevertheless, some examples are known for radicals that have relatively long lifetimes and modest rates of reaction with O₂ (i.e., Cys thiyl, Tyr phenoxy, Trp indolyl) [26].

5. Two-Electron (Molecule–Molecule) Reactions

Reactions between two molecules are typically much slower than between two radicals or radical–molecule reactions. However, the concentration of the reactants is often much higher than for reactive intermediates, and consequently, the overall rates of these reactions may be significant—and the yield of products greater—than for the processes outlined above. These reactions are therefore major sources of protein crosslinks. The rate constants for these reactions would be expected to vary enormously—though quantitative data is lacking for most

systems—with some reactions involving unstable species (e.g., sulfenic acids (RSOH), S-nitrosothiols (RSNO), unsaturated aldehydes/ketones, quinones) being relatively rapid (i.e., occurring over seconds/minutes).

6. Types of Crosslinks Detected within and between Proteins and Peptides

The following sections and **Table 1** summarize various types of crosslinks that have been detected within and between peptides and proteins, the nature of these species, their reversibility, mechanisms of formation and, subsequently, methods available to detect, identify, characterize and quantify these species.

Table 1. Examples of major non-disulfide protein crosslinks generated during non-enzymatic oxidative processes and methodologies employed to characterize them.

Crosslinked Residues	Protein(s)	Chemical Nature and/or Mechanism of Formation of the Crosslink	Method(s)	Refs
Tyr-Cys	a) Myoglobin	1) Michael addition from thiols (Cys) to oxidized Tyr species (a)	Mass spectrometry (a) X-ray crystallography (b, c)	[27][28] [29]
	b) Galactose oxidase	2) Thioether bridge (C-S) (b and c)		
	c) Cysteine dioxygenase			
Trp-Cys	Human growth hormone (hGH)	1) Michael addition from N (Trp indole) to DHA (formed from Cys) 2) Thioether bridge (C-S)	Mass spectrometry	[26]
Met-Hydroxy-lysine	Collagen IV	Formation of S=N bridge (sulfilimine bond) induced by peroxidasin/HOBr	Mass spectrometry	[11]
Lys-Cys	Transaldolase	Nitrogen–oxygen–sulfur (NOS) link/redox switch	X-ray crystallography	[30]
Cys-Ser	a) Human growth hormone b) Tyrosine phosphatase 1B	1) Formation of a vinyl ether between Ser and Cys that result in the elimination of the thiol group from Cys (a)	Mass spectrometry (a) X-ray crystallography (b)	[26][31]

Crosslinked Residues	Protein(s)	Chemical Nature and/or Mechanism of Formation of the Crosslink	Method(s)	Refs
		2) Sulfenyl amide (S–N bridge) between Cys-OH and main-chain amide of Ser residue (b)		
Cys-Phe	hGH	Crosslink between thioaldehyde from Cys and dehydrophenylalanine generated from Phe	Mass spectrometry	[26]
Cys-DHA Cys-DHB	Lens proteins (β B1, β B2, β A3, β A4 and γ S crystallins)	Nucleophilic addition from Cys (GSH) to DHA or DHB	Mass spectrometry	[32]
Tyr-Gly	Insulin	Michael addition of primary amines (N-terminal Gly) to oxidized Tyr species	Mass spectrometry	[33]
Trp-Gly	Matrilysin (Matrix metalloproteinase 7)	Crosslink between 3-chloroindolenine (3-Cl-Trp) and the main-chain amide adjacent to a Gly	NMR spectroscopy	[34]
Tyr-His	Insulin	Michael addition from His to oxidized Tyr	Mass spectrometry	[33]
Tyr-Tyr (selected data)	Isolated proteins including: α -lactalbumin, caseins, glucose 6-phosphate dehydrogenase, lysozyme, fibronectin, laminins, tropoelastin, cAMP receptor protein, α -synuclein, calmodulin, insulins, hemoglobin, human Δ 25 centrin 2. Human lipoproteins Human plasma proteins, including those from people with chronic renal failure Human atherosclerotic lesions Erythrocytes exposed to H_2O_2 Brain proteins (amyloid-beta and α -synuclein) from Alzheimer's subjects Lipofuscin from aged human brain Urine from people with diabetes Human lens proteins	C–C and/or C–O crosslinks via radical–radical reactions	Western blotting UPLC/HPLC with various detection methods Mass spectrometry	[33][35] [36][37] [38][39] [40][41] [42][43] [44][45] [46][47] [48][49] [50][51] [52][53] [54][55] [56][57] [58][59] [60][61] [62]

Crosslinked Residues	Protein(s)	Chemical Nature and/or Mechanism of Formation of the Crosslink	Method(s)	Refs
	Bacterial spore coat proteins Parasite oocysts			
Trp-Trp	a) α -Lactalbumin b) Superoxide dismutase 1 (hSOD) c) Lysozyme-hSOD d) α B-Crystallin e) Fibronectin	C–C or C–N crosslinks via radical–radical reactions	Mass spectrometry	[35][42] [63][64] [65]
Tyr-Trp	a) Cytochrome c peroxidase b) α -Lactalbumin c) Glucose 6-phosphate dehydrogenase d) Lysozyme e) β -Crystallin f) Human cataractous lenses g) Fibronectin	C–C (or C–O and C–N) crosslinks via radical–radical reactions	X-ray crystallography (a) Mass spectrometry (b–g)	[35][38] [41][42] [65][66]
His-His	a) Immunoglobulin G1 b) Immunoglobulin G4 c) N-Ac-His	Nucleophilic addition of His to oxidized His	Mass spectrometry (a,b) NMR (c)	[67][68] [69][70]
His-Arg	Ribonuclease A (RNase)	Nucleophilic addition of Arg to oxidized His	Mass spectrometry	[71]

References

1. Hogg, P.J. Disulfide bonds as switches for protein function. *Trends Biochem. Sci.* 2003, 28, 210–214.

Crosslinked Residues	Protein(s)	Chemical Nature and/or Mechanism of Formation of the Crosslink	Method(s)	Refs	links
His-Lys	Immunoglobulin G1	Nucleophilic addition of Lys to oxidized His	Mass spectrometry	[67][69]	Bohm,
His-Cys	Immunoglobulin G1	Nucleophilic addition of Cys to oxidized His	Mass spectrometry	[69]	
	a) RNase				case.
Tyr-Lys	b) Interferon beta-1a	Michael addition of Lys to oxidized Tyr	Mass spectrometry	[33][71] [72]	es, M.J. art Rev.
	c) Insulin				

6. Kagan, H.M. Lysyl oxidase: Mechanism, regulation and relationship to liver fibrosis. *Pathol. Res. Pract.* 1994, 190, 910–919.

6. Secondary Reactions of Crosslinks

7. López, B.; González, A.; Hermida, N.; Valencia, F.; de Teresa, E.; Díez, J. Role of lysyl oxidase in myocardial fibrosis: From basic science to clinical aspects. *Am. J. Physiol. Heart Circ. Physiol.* 2010, 299, H1–H9.

In most biological systems, protein crosslinks, and particularly the formation of irreversible covalent crosslinks such as di-Tyr, di-Trp and Tyr-Trp, are considered as 'final' oxidation products [73]. However, over-oxidation of these species is possible, particularly under conditions of extensive oxidative damage or under environments with long-term protein exposure to oxidants, where secondary one-electron oxidation with formation of radicals such as di-Tyr[•], di-Trp[•], or Tyr-Trp[•] may occur. Such radicals can mediate similar reactions to those described above for Tyr[•] and Trp[•], including reaction with O₂[•] to produce oxygenated products (e.g., alcohols and hydroperoxides) and self-reactions to generate trimers and oligomers. Thus, formation of tri-Tyr and pulcherosine crosslinks have been detected in human phagocytes [74], while di-, tri- and tetra-Tyr have been reported in structural proteins of plant parasitic nematodes [74]. In addition, oligomers of Tyr ($n = 2$ –8) have been reported in α -lactalbumin exposed to a peroxidase-like oxidase-heme system [75]. Tri-Tyr has been reported in trimers of hSOP1 triggered by CO₂ [63], while di-Tyr and di-Trp have been reported to form O₂ adducts in solutions of free Tyr and riboflavin illuminated with a high intensity 365 nm light-emitting diode [76].

11. Bhaye, G.; Cummings, C.E.; Vanacore, R.M.; Kumagai-Cresse, C.; Fro-Tolliver, I.A.; Rafi, M.; Kang, J.-S.; Pedchenko, Y.; Fessler, L.J.; Fessler, J.H.; et al. Peroxidase forms sulfilimine involving O₂[•], singlet oxygen (O₂¹) and H₂O₂. [77]. These observations were ascribed to the action of di-Tyr chemical bonds using hypohalous acids in tissue genesis. *Nat. Chem. Biol.* 2012, 8, 784–790.

12. Peteri, Z.; Geiss, M. Peroxidases: Novel players in tissue genesis. *Trends Biochem. Sci.* 2011, 36, 305–307.

13. Jacob, J.S.; Cistola, D.P.; Hsu, F.F.; Muzaffar, S.; Mueller, D.M.; Hazen, S.L.; Heinecke, J.W. Human phagocytes employ the myeloperoxidase-hydrogen peroxide system to synthesize dityrosine, trityrosine, pulcherosine, and isodityrosine by a tyrosyl radical-dependent pathway. *J. Biol. Chem.* 1996, 271, 19950–19956.

7. Detection of Crosslinks, including Advantages and Disadvantages of Different Methods

17.1 Analysis of Changes in Molecular Mass by Electrophoresis and Size Exclusion Chromatography (SEC)

15. Dunford, H.B. Peroxidases. In *Advances in Inorganic Biochemistry*; Elsevier: Amsterdam, The Netherlands, 1982; pp. 41–68.
16. Davies, M.J. Protein oxidation and size separation strategies. *PhotoChem. PhotoBiol.* 2016, **117**, 805–825.
17. Carreau, A.; El Hafny-Rahbi, B.; Matejuk, A.; Grillon, C.; Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. *J. Cell Mol. Med.* 2011, **15**, 1239–1253.
18. Ditzinger, M. Size separation and characterization of oxidation-induced aliphatic peptide dimers. *Int. J. Radiat. Biol.* 1983, **41**, 281–288.
19. Schoneich, C. Thiyl radicals and induction of protein degradation. *Free Radic. Res.* 2016, **50**, 143–149.

7.2. Analysis of Protein Crosslinks by Western (Immuno-) Blotting and ELISA Assays

20. Assay, X.; Jin, F.; Jin, H.; von Sonntag, C. Reaction of the superoxide radical with the N-centred radical derived from N-acetyltryptophan methyl ester. *J. Chem. Soc. Perkin. Trans.* 1998, 259–263.
21. These are typically examined using immunoblotting or ELISA assays, with the former providing (limited) information about the proteins on which the crosslinks are present, and whether these are intramolecular (in a monomer) or interchain species. However, there are few well-characterized antibodies against crosslinked species, and these vary significantly in their specificity and selectivity, with some having significant cross-reactivity with other materials. Furthermore, crosslinks buried within highly aggregated species may be poorly, or not, recognized by (large) antibodies. Thus, appropriate control experiments are critical, and both positive and negative data should be validated by alternative methods.
22. Hunter, E.P.; Desvoeux, M.P.; Simic, M.G. The effect of oxygen, antioxidants, and Superoxide radical on tyrosine phosphorylation. *Free Radic. Biol. Med.* 1989, **6**, 581–585.
23. Pattison, D.I.; Rahmanto, A.S.; Davies, M.J. Photo-oxidation of proteins. *PhotoChem. PhotoBiol. Sci.* 2012, **11**, 38–53.

7.3. Direct Detection by Spectrophotometric and Fluorometric Assays

24. Sieklak, D. O. Denatured amino acids in naturally occurring peptides. *Amino Acids* 2015, **47**, 1–17.
25. Friedman, M. Chemistry, biochemistry, nutrition, and microbiology of lysinoalanine, lanthionine, and histidinoalanine in food and other proteins. *J. Agric. Food Chem.* 1999, **47**, 1295–1319.
26. Steinmann, D.; Mozziconacci, O.; Bonnmann, R.; Stobaugh, J.P.; Wang, Y.J.; Schoneich, C. Photodegradation pathways of protein disulfides: Human growth hormone. *Pharm. Res.* 2017, **34**, 2756–2778.
27. Nagy, P.; Lechte, T.P.; Das, A.B.; Winterbourn, C.C. Conjugation of glutathione to oxidized tyrosine residues in peptides and proteins. *J. Biol. Chem.* 2012, **287**, 26068–26076.
- In contrast, fluorescence experiments can provide relatively specific data on crosslinks such as di-Tyr (excitation and emission maximum at ~280 and ~410 nm, respectively) [80]. Such data need to be interpreted with care, particularly with intact proteins or complex systems, as other fluorescent or optically absorbing species (e.g., Tyr, Trp, Trp-derived products, co-factors) may be present that distort excitation or emission processes.
28. Rokhsana, D.; Howells, A.E.; Dooley, D.M.; Szilagyi, R.K. Role of the Tyr-Cys cross-link to the active site properties of galactose oxidase. *Inorg. Chem.* 2012, **51**, 3513–3524.
29. Davies, C.G.; Fellner, M.; Tchesnokov, E.P.; Wilbanks, S.M.; Jameson, G.N. The Cys-Tyr cross-link of cysteine dipeptidase changes the optimal pH of the reaction without a structural change.

The *Biochemistry* 2014, **53**, 7961–7968 quantitative data on both the consumption of the parent amino acid residues, and product formation, including Trp- and Tyr-derived crosslinks [81][80][82][83].

7.5. Detection and Characterization of Crosslinked Proteins Using Other Biophysical Approaches

31. Van Montfort, R.L.; Congreve, M.; Tisi, D.; Carr, R.; Jhoti, H. Oxidation state of the active-site Biophysical techniques including circular dichroism (CD), light scattering, small angle neutron scattering (SANS), cysteine in protein tyrosine phosphatase 1B. *Nature* 2003, 423, 775–777.

32. Wang, Z.; Lyons, B.; Truscott, R.J.; Schey, K.L. Human protein aging: Modification and provide useful information on protein structure. These methods are sensitive to modified structures, supplying crosslinking through dehydroalanine and dehydrobutyryne intermediates. *Aging Cell* 2014, 13, valuable information on changes in morphology (i.e., mass, size and shape), secondary structure and solubility [30] 226–234. [84] [85]. Some of these can also yield data on increased electron density between residues, thus supporting the

33. Terosantiboth, R.; Mazzoni, C.; Sharpen, S.; Schoneis, C.; Jiskoot, W. Chemical modifications crystal aggregates to determine the mechanisms induced by metal catalyzed oxidation: Covalent 2 and yS-crosslinking via intermediate addition to tyrosine oxidation products. *Proteins* 2012, 80, 852–861 [86] [87]. However, most of these methods (with the exception of X-ray crystallography, NMR spectroscopy and cryogenic electron microscopy) cannot provide a structure of sufficiently high-resolution to provide definitive identifications

34. Fu, X.; Kao, J.L.; Bergt, C.; Kassim, S.Y.; Huq, N.P.; d'Avignon, A.; Parks, W.C.; Mecham, R.P.; and they must therefore be combined with other methodologies. Moreover, these methods are currently limited to Heinecke, J.W. Oxidative cross-linking of tryptophan to glycine restrains matrix metalloproteinase homogeneous (single protein) samples that are available in large quantities (mg amounts). activity: Specific structural motifs control protein oxidation. *J. Biol. Chem.* 2004, 279, 6209–6212.

3.6 Mass Spectrometry (MS)-Based Detection and Structural Characterization of Crosslinked Proteins

exposure. *J. Agric. Food Chem.* 2020, 68, 6701–6714.
MS is a highly versatile technique for analysis of protein crosslinks that can be applied to (i) detect crosslinks and
36 Fuentes-Lemus, E.; Silva, E.; Leinisch, F.; Dorta, E.; Lorentzen, I. G.; Davies, M. J.; López,
quantify their abundance; (ii) localize the specific crosslinking sites within polypeptides and (iii) reveal the identity of
Alarcón, G. alpha- and beta-casein aggregation induced by riboflavin-sensitized photo-oxidation
the crosslinked proteins. All of these questions cannot, however, be readily answered in a single experiment, and
occurs via di-tyrosine cross-links and is oxygen concentration dependent. *Food Chem.* 2018, 256,
careful consideration must be given to appropriate workflows for specific applications.
119–128.

37. Colonnio, G.; Pérez, M.; Andrade, A.; Ruiz, I. **8. Crosslink Quantification**

Rossi, R.; Dalle-Donne, I.; Milzani, A. Thiol oxidation and di-tyrosine formation in human plasma At present the use of twin thiol assays to determine the concentrations of hypothiobis and disulphide crosslinks in plasma is limited by the non-availability of pure standards, particularly from commercial sources. Thus, there is a pressing need for further pure crosslink standards for quantitative analyses. Disulfides are a major exception, 38. Leinisch, F.; Mariotti, M.; Rykaer, M.; López-Alarcón, C.; Hägglin, P.; Davies, M.J. Peroxyl together with di-Tyr (which is commercially available) and a few species generated via glycation reactions (e.g., radical- and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and pentosidine). Di-Tyr can therefore be quantified in absolute terms using some of the methods outlined above, using functional changes via oxidation of tyrosine and tryptophan residues. Free Radic. Biol. Med. 2017, the purified material to construct standard curves (e.g., for MS or fluorescence detection, and UPLC/LC 112, 240–252. separation). Relative concentrations can also be obtained from ELISA assays using an anti-di-Tyr antibody, and 39. Fuentes-Lemus, F.; Mariotti, M.; Hägglin, P.; Leinisch, F.; Fierro, A.; Silva, E.; Davies, M.J. protein approximate concentrations from the assay. In many cases, even with isolated proteins where protein López-Alarcón found that oxidation of lysozyme induced by peroxyl radicals involves amino acid modifications, loss of activity and formation of specific crosslinks. Free Radic. Biol. Med. 2021, 167, 258–270.

40. Fuentes-Lemus, E.; Mariotti, M.; Hägglund, P.; Leinisch, F.; Fierro, A.; Silva, E.; López-Alarcón, C.; Davies, M.J. Binding of rose bengal to lysozyme modulates photooxidation and cross-linking reactions involving tyrosine and tryptophan. *Free Radic. Biol. Med.* 2019, 143, 375–386.
41. Fuentes-Lemus, E.; Mariotti, M.; Reyes, J.; Leinisch, F.; Hägglund, P.; Silva, E.; Davies, M.J.; López-Alarcón, C. Photo-oxidation of lysozyme triggered by riboflavin is O₂-dependent, occurs via mixed type 1 and type 2 pathways, and results in inactivation, site-specific damage and intra- and inter-molecular crosslinks. *Free Radic. Biol. Med.* 2020, 152, 61–73.
42. Mariotti, M.; Rogowska-Wrzesinska, A.; Hägglund, P.; Davies, M.J. Cross-linking and modification of fibronectin by peroxy nitrous acid: Mapping and quantification of damage provides a new model for domain interactions. *J. Biol. Chem.* 2021, 296, 100360.
43. Degendorfer, G.; Chuang, C.Y.; Hammer, A.; Malle, E.; Davies, M.J. Peroxynitrous acid induces structural and functional modifications to basement membranes and its key component, laminin. *Free Radic. Biol. Med.* 2015, 89, 721–733.
44. Leinisch, F.; Mariotti, M.; Andersen, S.H.; Lindemose, S.; Hägglund, P.; Mollegaard, N.E.; Davies, M.J. UV oxidation of cyclic AMP receptor protein, a global bacterial gene regulator, decreases DNA binding and cleaves DNA at specific sites. *Sci. Rep.* 2020, 10, 3106.
45. Ursem, R.; Swarge, B.; Abhyankar, W.R.; Buncherd, H.; de Koning, L.J.; Setlow, P.; Brul, S.; Kramer, G. Identification of native cross-links in *Bacillus subtilis* spore coat proteins. *J. Proteome Res.* 2021, 20, 1809–1816.
46. Leeuwenburgh, C.; Rasmussen, J.E.; Hsu, F.F.; Mueller, D.M.; Pennathur, S.; Heinecke, J.W. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. *J. Biol. Chem.* 1997, 272, 3520–3526.
47. Giulivi, C.; Davies, K.J. Dityrosine and tyrosine oxidation products are endogenous markers for the selective proteolysis of oxidatively modified red blood cell hemoglobin by (the 19 S) proteasome. *J. Biol. Chem.* 1993, 268, 8752–8759.
48. Truscott, R.J.W.; Friedrich, M.G. The etiology of human age-related cataract. Proteins don't last forever. *Biochim. Biophys. Acta* 2016, 1860, 192–198.
49. Serpell, L.C.; Williams, T.L.; Stewart-Parker, M.; Ford, L.; Skaria, E.; Cole, M.; Bucher, W.G.r.; Morris, K.L.; Sada, A.A.; Thorpe, J.R. A central role for dityrosine crosslinking of Amyloid-β in Alzheimer's disease. *Acta Neuropathol Commun.* 2013, 1, 83.
50. Tiwari, M.K.; Leinisch, F.; Sahin, C.; Møller, I.M.; Otzen, D.E.; Davies, M.J.; Bjerrum, M.J. Early events in copper-ion catalyzed oxidation of α-synuclein. *Free Radic. Biol. Med.* 2018, 121, 38–50.
51. Pennathur, S.; Jackson-Lewis, V.; Przedborski, S.; Heinecke, J.W. Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o'-dityrosine in brain tissue of 1-methyl-4-

- phenyl-1,2,3,6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson's disease. *J. Biol. Chem.* 1999, 274, 34621–34628.
52. Kato, Y.; Maruyama, W.; Naoi, M.; Hashizume, Y.; Osawa, T. Immunohistochemical detection of dityrosine in lipofuscin pigments in the aged human brain. *FEBS Lett.* 1998, 439, 231–234.
53. Kato, Y.; Dozaki, N.; Nakamura, T.; Kitamoto, N.; Yoshida, A.; Naito, M.; Kitamura, M.; Osawa, T. Quantification of modified tyrosines in healthy and diabetic human urine using liquid chromatography/tandem mass spectrometry. *J. Clin. Biochem. Nutr.* 2009, 44, 67–78.
54. Wu, G.R.; Cheskerek, M.; Shi, Y.H.; Shen, L.Y.; Yu, J.; Le, G.W. Elevated plasma dityrosine in patients with hyperlipidemia compared to healthy individuals. *Ann. Nutr. Metab.* 2014, 66, 44–50.
55. Ziouzenkova, O.; Asatryan, L.; Akmal, M.; Tetta, C.; Wratten, M.L.; Loseto-Wich, G.; Jurgens, G.; Heinecke, J.; Sevanian, A. Oxidative cross-linking of ApoB100 and hemoglobin results in low density lipoprotein modification in blood. Relevance to atherogenesis caused by hemodialysis. *J. Biol. Chem.* 1999, 274, 18916–18924.
56. Francis, G.A.; Mendez, A.J.; Bierman, E.L.; Heinecke, J.W. Oxidative tyrosylation of high density lipoprotein by peroxidase enhances cholesterol removal from cultured fibroblasts and macrophage foam cells. *Proc. Natl. Acad. Sci. USA* 1993, 90, 6631–6635.
57. Malencik, D.A.; Anderson, S.R. Dityrosine formation in calmodulin: Cross-linking and polymerization catalyzed by *Arthromyces* peroxidase. *Biochemistry* 1996, 35, 4375–4386.
58. Aeschbach, R.; Amado, R.; Neukom, H. Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. *Biochim. Biophys. Acta* 1976, 439, 292–301.
59. Das, A.B.; Nauser, T.; Koppenol, W.H.; Kettle, A.J.; Winterbourn, C.C.; Nagy, P. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition. *Free Radic. Biol. Med.* 2014, 70, 86–95.
60. Gatin, A.; Billault, I.; Duchambon, P.; Van der Rest, G.; Sicard-Roselli, C. Oxidative radicals (HO- or N3-) induce several di-tyrosine bridge isomers at the protein scale. *Free Radic. Biol. Med.* 2021, 162, 461–470.
61. Degendorfer, G.; Chuang, C.Y.; Kawasaki, H.; Hammer, A.; Malle, E.; Yamakura, F.; Davies, M.J. Peroxynitrite-mediated oxidation of plasma fibronectin. *Free Radic. Biol. Med.* 2016, 97, 602–615.
62. Mai, K.; Smith, N.C.; Feng, Z.P.; Katrib, M.; Šlapeta, J.; Šlapetova, I.; Wallach, M.G.; Luxford, C.; Davies, M.J.; Zhang, X.; et al. Peroxidase catalysed cross-linking of an intrinsically unstructured protein via dityrosine bonds in the oocyst wall of the apicomplexan parasite, *Eimeria maxima*. *Int. J. Parasitol.* 2011, 41, 1157–1164.
63. Medinas, D.B.; Gozzo, F.C.; Santos, L.F.A.; Iglesias, A.H.; Augusto, O. A ditryptophan cross-link is responsible for the covalent dimerization of human superoxide dismutase 1 during its

- bicarbonate-dependent peroxidase activity. *Free Radic. Biol. Med.* 2010, **49**, 1046–1053.
64. Paviani, V.; Queiroz, R.F.; Marques, E.F.; Di Mascio, P.; Augusto, O. Production of lysozyme and lysozyme-superoxide dismutase dimers bound by a ditryptophan cross-link in carbonate radical-treated lysozyme. *Free Radic. Biol. Med.* 2015, **89**, 72–82.
65. Paviani, V.; Junqueira de Melo, P.; Avakin, A.; Di Mascio, P.; Ronsein, G.E.; Augusto, O. Human cataractous lenses contain cross-links produced by crystallin-derived tryptophanyl and tyrosyl radicals. *Free Radic. Biol. Med.* 2020, **160**, 356–367.
66. Bhaskar, B.; Immoos, C.E.; Shimizu, H.; Sulc, F.; Farmer, P.J.; Poulos, T.L. A novel heme and peroxide-dependent tryptophan-tyrosine cross-link in a mutant of cytochrome c peroxidase. *J. Mol. Biol.* 2003, **328**, 157–166.
67. Liu, M.; Zhang, Z.; Cheetham, J.; Ren, D.; Zhou, Z.S. Discovery and characterization of a photo-oxidative histidine-histidine cross-link in IgG1 antibody utilizing ¹⁸O-labeling and mass spectrometry. *Anal. Chem.* 2014, **86**, 4940–4948.
68. Powell, T.; Knight, M.J.; O'Hara, J.; Burkitt, W. Discovery of a photoinduced histidine-histidine cross-link in an IgG4 antibody. *J. Am. Soc. Mass Spectrom.* 2020, **31**, 1233–1240.
69. Xu, C.F.; Chen, Y.; Yi, L.; Brantley, T.; Stanley, B.; Sosic, Z.; Zang, L. Discovery and characterization of histidine oxidation initiated cross-links in an IgG1 monoclonal antibody. *Anal. Chem.* 2017, **89**, 7915–7923.
70. Agon, V.V.; Bubb, W.A.; Wright, A.; Hawkins, C.L.; Davies, M.J. Sensitizer-mediated photooxidation of histidine residues: Evidence for the formation of reactive side-chain peroxides. *Free Radic. Biol. Med.* 2006, **40**, 698–710.
71. Leinisch, F.; Mariotti, M.; Hägglund, P.; Davies, M.J. Structural and functional changes in RNase A originating from tyrosine and histidine cross-linking and oxidation. *Free Radic. Biol. Med.* 2018, **126**, 73–86.
72. Torosantucci, R.; Sharov, V.S.; Van Beers, M.; Brinks, V.; Schöneich, C.; Jiskoot, W. Identification of oxidation sites and covalent cross-links in metal catalyzed oxidized interferon beta-1a: Potential implications for protein aggregation and immunogenicity. *Mol. Pharm.* 2013, **10**, 2311–2322.
73. Breusing, N.; Grune, T. Biomarkers of protein oxidation from a chemical, biological and medical point of view. *Exp. Gerontol.* 2010, **45**, 733–737.
74. Lopezllorca, L.V.; Fry, S.C. Dityrosine, trityrosine and tetratyrosine, potential cross-links in structural proteins of plant-parasitic nematodes. *Nematologica* 1989, **35**, 165–179.
75. Dhayal, S.K.; Sforza, S.; Wierenga, P.A.; Gruppen, H. Peroxidase induced oligo-tyrosine cross-links during polymerization of alpha-lactalbumin. *Biochim Biophys. Acta Proteins Proteom.* 2015, **1854**, 1898–1905.

76. Silva, E.; Barrias, P.; Fuentes-Lemus, E.; Tirapegui, C.; Aspee, A.; Carroll, L.; Davies, M.J.; López-Alarcón, C. Riboflavin-induced Type 1 photo-oxidation of tryptophan using a high intensity 365nm light emitting diode. *Free Radic. Biol. Med.* 2019, 131, 133–143.
77. Reid, L.O.; Vignoni, M.; Martins-Froment, N.; Thomas, A.H.; Dantola, M.L. Photochemistry of tyrosine dimer: When an oxidative lesion of proteins is able to photoinduce further damage. *PhotoChem. PhotoBiol. Sci.* 2019, 18, 1732–1741.
78. Huang, Y.R.; Hua, Y.F.; Qiu, A.Y. Soybean protein aggregation induced by lipoxygenase catalyzed linoleic acid oxidation. *Food Res. Int.* 2006, 39, 240–249.
79. Cui, X.H.; Xiong, Y.L.L.; Kong, B.H.; Zhao, X.H.; Liu, N. Hydroxyl radical-stressed whey protein isolate: Chemical and structural properties. *Food Bioprocess. Technol.* 2012, 5, 2454–2461.
80. Hawkins, C.L.; Morgan, P.E.; Davies, M.J. Quantification of protein modification by oxidants. *Free Radic. Biol. Med.* 2009, 46, 965–988.
81. Figueroa, J.D.; Zarate, A.M.; Fuentes-Lemus, E.; Davies, M.J.; López-Alarcón, C. Formation and characterization of crosslinks, including Tyr-Trp species, on one electron oxidation of free Tyr and Trp residues by carbonate radical anion. *RSC Adv.* 2020, 10, 25786–25800.
82. Gamon, L.F.; Guo, C.; He, J.; Hägglund, P.; Hawkins, C.L.; Davies, M.J. Absolute quantitative analysis of intact and oxidized amino acids by LC-MS without prior derivatization. *Redox Biol.* 2020, 36, 101586.
83. Desmons, A.; Thioulouse, E.; Hautem, J.Y.; Saintier, A.; Baudin, B.; Lamaziere, A.; Netter, C.; Moussa, F. Direct liquid chromatography tandem mass spectrometry analysis of amino acids in human plasma. *J. Chromatogr. A* 2020, 1622, 461135.
84. Verzini, S.; Shah, M.; Theillet, F.X.; Belsom, A.; Bieschke, J.; Wanker, E.E.; Rappsilber, J.; Binolfi, A.; Selenko, P. Megadalton-sized dityrosine aggregates of alpha-synuclein retain high degrees of structural disorder and internal dynamics. *J. Mol. Biol.* 2020, 432, 166689.
85. Thorn, D.C.; Grosas, A.B.; Mabbitt, P.D.; Ray, N.J.; Jackson, C.J.; Carver, J.A. The structure and stability of the disulfide-linked gammaS-crystallin dimer provide insight into oxidation products associated with lens cataract formation. *J. Mol. Biol.* 2019, 431, 483–497.
86. Evrard, C.; Capron, A.; Marchand, C.; Clippe, A.; Wattiez, R.; Soumillion, P.; Knoops, B.; Declercq, J.P. Crystal structure of a dimeric oxidized form of human peroxiredoxin 5. *J. Mol. Biol.* 2004, 337, 1079–1090.
87. Smeets, A.; Evrard, C.; Landtmeters, M.; Marchand, C.; Knoops, B.; Declercq, J.P. Crystal structures of oxidized and reduced forms of human mitochondrial thioredoxin 2. *Protein Sci.* 2005, 14, 2610–2621.

Retrieved from <https://encyclopedia.pub/entry/history/show/47428>