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Many practical data-processing algorithms fail to execute efficiently on general-purpose CPUs (Central Processing Units)

due to the sequential matter of their operations and memory bandwidth limitations. To achieve desired performance levels,

reconfigurable (FPGA (Field-Programmable Gate Array)-based) hardware accelerators are frequently explored that permit

the processing units’ architectures to be better adapted to the specific problem/algorithm requirements. In particular,

network-based data-processing algorithms are very well suited to implementation in reconfigurable hardware because

several data-independent operations can easily and naturally be executed in parallel over as many processing blocks as

actually required and technically possible.

Keywords: network-based algorithms ; network-based hardware accelerators ; reconfigurable hardware

1. Introduction

Network-based data processing has attracted considerable attention due to recent advancements in reconfigurable

computing, allowing complex and complete systems to be efficiently implemented and deployed in embedded

applications. Field-Programmable Gate Arrays (FPGA) have been used to support parallel algorithm for decades, but it

was a tight integration of reconfigurable logic with hard processing cores (both general purpose cores and graphics

processing units) as well as latest advances in high-level synthesis tools that awoke more interest in network-based

parallel data processing.

Network-based processing algorithms are characterized by a network of nodes, connected in a mesh so that data are

processed by a number of nodes in parallel. Connecting processing units in a mesh/torus/fat tree is explored in many

supercomputers, including IBM Summit , Sunway TaihuLight , and Fugaku . Supercomputing capabilities are

definitely required in modern data centers but are not suitable for embedded systems due to constraints such as size,

portability, power, and cost. The design of efficient embedded systems therefore involves different optimization criteria.

Embedded systems have dedicated functions and can be optimized for particular operations in terms of execution time,

existing real-time constraints, cost, and power consumption .

FPGA have become more common as a core technology used to build electronic embedded systems. Moreover,

Programmable Systems-on-Chip (PSoC) integrate reconfigurable logic with hardcore general-purpose and graphics-

processing units, embedded memory blocks, high-performance interfaces, and specific-processing units (such as Digital

Signal Processing (DSP) blocks) becoming complete, versatile, and programmable systems on a chip, steadily displacing

general purpose processors and ASICs (Application-Specific Integrated Circuits). There are many reports of successful

implementation of high-performance systems with FPGAs/PSoCs .

2. Implementations of Parallel Networks in Reconfigurable Hardware

As it was illustrated in the previous section, various basic components (such as comparators or half-adders) belonging to

the same network level can operate in parallel since they manipulate independent data. Therefore, such networks are

very well suited to implementation in reconfigurable hardware, provided the number of components and levels can easily

be customized to particular network parameters N and M. In this section, various implementation approaches will be

analyzed and their advantages and pitfalls identified.

2.1. Implementations of Sorting Networks

Sorting is a very demanded operation in various fields, therefore a lot of research had directed toward optimizing

executing this task. Sorting accelerators are often used in a very large number of systems beginning from simple

embedded systems processing data received from sensors and ending with complex multichip-distributed computing
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systems that can be found in such areas as medical instrumentation, machine-tool control, communications, industrial

networks, vehicles, agriculture, monitoring motorways, etc. .

The first efficient implementations of sorting networks in FPGA have been reported 10–15 years ago, when the logic

capacity of programmable devices has reached sufficient levels to compete with general-purpose and application-specific

processing systems for solving computationally intensive problems. For example, Mueller et al.  exploit the

reconfigurability of FPGAs at runtime by reprogramming the chip for individual workloads, achieving high resource

utilization and implementing data and task parallelism . Their implementations and experiments are targeted towards a

Virtex-5 FPGA available on the Xilinx ML510 development board and running at 100 MHz. The authors analyzed bitonic

and even-odd merge sorting networks and came to the conclusion that despite requiring more comparators, bitonic merge

sorters are preferred because both the number of concurrent comparators for each level is constant (equal to N/2) and the

delay for all signal paths is equal. For the selected bitonic merge network type, three alternative circuits have been

studied: combinational (no clock), synchronous (exploring trade-off between the latency and clock frequency), and fully

pipelined (allowing a new input data set to be applied every clock cycle). The authors did all the initial experiments,

permitting to estimate approximately resources that would be required for instantiating a single M = 32-bit two-input

comparator. That work permitted to conclude that the used Virtex-5 FX130T chip could accommodate just 1024 32-bit

comparators. The implemented sorters were able to process up to N = 2  = 64 data items. The overall conclusion is that

only small data subsets can be sorted in parallel in an FPGA-based accelerator therefore some software-based merger

would make sense. When merging the sorted by the accelerator subsets in software, the speedup decreases with the

increase of the data set size. The explanation is that the ratio between the work done by software (the CPU—Central

Processing Unit) to work done in parallel in the accelerator decreases. Though no high speed-ups have been achieved

over a CPU, the works  provide the important step towards incorporating the capabilities of FPGAs into parallel data

processing engines.

Zuluaga et al.  affirm that sorting networks offer great performance but are prohibitively expensive for large data sets

and propose tools to automatically generate a large set of candidate designs, which would lead to hardware

implementations of sorting networks with reduced area, which are optimized for latency or throughput. A Domain-Specific

Language (DSL) is introduced that permits different sorting networks to be represented. The designed DSL compiler

generates Verilog Register-Transfer Level (RTL) descriptions for each desired design. To reduce the area cost, the

suggested generator explores the regularity of the sorting networks to “fold” them by reusing sorting elements and

constructing a variety of sequential datapaths. The resulting circuits are called “sorting networks with streaming reuse”.

Experiments have been targeted to the Xilinx Virtex-6 XC6VLX760 FPGA using M = 16-bit input data. The authors report

that the circuit with maximum reuse, which recurs to only one sorter, and the lowest throughput could be fit in the

employed FPGA for N = 2 , M = 16.

Sklyarov et al.  performed analysis of different sorting networks and concluded that even–odd transition networks

are among the most regular and easily scalable. As the Table 1 confirms, even–odd transition networks are often

characterized as considerably slower and more resource consuming comparing with even–odd merge and bitonic merge

networks. However, the regularity of the even–odd transition networks permits simple iterative circuits to be designed with

a main module composed of just two vertical comparator lines. Since the reused core module is identical for every pair of

network’s levels, no multiplexers or complex interconnections are required, which would definitely be needed for bitonic

merge and even–odd merge networks, leading to increasing propagation delays and decreasing throughput. A feedback N

× M-bit register is inserted before a pair of vertical comparator lines and different levels are activated sequentially, still

using many parallel comparison operations at each level. Initially N data items are copied in parallel to the register. Thus,

there are N multiplexers at the register inputs taking data from outside (before processing) and from the second vertical

line of comparators (during processing). Hardware resources are obviously decreased from N × (N − 1)/2 (see Table 1) to

N − 1 comparators. The resulting circuits are easily scalable to any N and the respective parameterizable VHDL

specifications are given in . The overall throughput should be decreased as besides of executing the required by the

network comparison operations, the register’s delay slows down the sorting. This is however not true because in practice

the number of paths through the vertical levels of comparators is decreased when comparing to hardwired combinational

sorting networks. This is because usually (not taking into account the worst case) the data become sorted at some stage

earlier than passing through all the network’s levels (this situation is illustrated in Figure 1 with the “sorted” label). The

sequential sorter takes advantage of this fact and stops sorting as soon as at any stage no swaps in the vertical

comparator lines are detected. Experiments realized on the Xilinx Zynq xc7z020 PSoC prove that no performance

degradation is identified and the resources are reduced significantly, allowing constructing sorting circuits for N = 512/M =

32 . The authors also called attention to the fact that although very interesting throughputs could be demonstrated by

sorting networks themselves, such theoretical throughputs are not achievable in practice because of communication

overheads. Indeed, initial data need to be supplied to the sorter (ideally, in parallel) and the results have to be taken from
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the sorter. So, trying to increase the number of sortable in parallel elements might be useless if there is no sufficient

bandwidth to supply these elements to the sorter. To alleviate this problem, a communication-time sorter has been

proposed in  that is based on the network from  permitting to find minimum and maximum values and enables data

sorting to be completely overlapped in time with data transfers so that sorting is completed as soon as the last data item is

received. Sorting subsets in an FPGA-based hardware accelerator and merging in software running on a hard processor

in a Zynq PSoC has also been explored in .

Table 1. Parameters of the analyzed sorting networks.

Sorting Network C (N = 2 ) L (N = 2 )

Bubble N × (N − 1)/2 2 × N − 3

Even–odd merge (p  − p + 4) × 2  − 1 p × (p + 1)/2

Bitonic merge (p  + p) × 2  − 2 p × (p + 1)/2

Even–odd transition N × (N − 1)/2 N

Najafi et al. propose a more area-efficient sorting network in , which relies on unary processing. The idea is to encode

every data item by a sequence of values ‘1’ followed by a sequence of values ‘0’ in a stream of 0’s and 1’s, such that the

value is defined by the fraction of 1’s in the stream. Such an encoding permits to substitute conventional comparators by

AND and OR gates. The authors report significant area reductions compared to traditional binary encoding but at the

same time additional overhead is incurred by both conversion units which are required to encode the data from the binary

to the stream format and a much longer operation time due to performing the operation on 2 -bit long streams.

Norollah et al.  suggest a multidimensional data sorter relying on matrix-based sorting suitable for real-time systems.

The main achievements of the proposal are reducing the required resources and increasing memory efficiency, while

experiencing a small negative impact on the execution time. Firstly, the authors propose organizing N input data in

 matrix and activating  sorting networks to sort all the data. At each phase (out of six phases), each

sorting network sorts its assigned either row or column items independently. Then, three-dimensional matrices are

explored, leading to reduced resources but increasing the required number of sorting phases. Experiments executed on

XC7VX485T FPGA of Virtex-7 family proved that the number of Look-Up Tables (LUTs) indeed dropped significantly when

compared to a conventional bitonic merge sorting network, but the number of registers was increased (due to embedding

a pipeline stage between each level in the network).

Srivastava et al.  tried to solve the slow throughput problem in the merge sort and proposed a merge sort-based hybrid

design where the final few levels in the merge sort network are replaced with “folded” bitonic merge networks. The authors

tried to mix merge and bitonic sorting networks in attempt to alleviate their drawbacks. Thus, at the initial steps of the

suggested sorting network merge sorting structure is employed, while the final steps recur to the bitonic method to

increase parallelism. The experiments executed on the XC7VX690T FPGA confirm improving the throughput and reducing

memory consumption.

Besides of the briefly characterized key works, other reports of efficient implementation of sorting networks in FPGA are

recorded in the literature .

2.2. Implementations of Searching Networks

Sklyarov et al. report the results of such implementation in , considering two possible approaches: combinational

and sequential. For the combinational implementation, the respective parameterizable VHDL specification is given in .

In the sequential circuit, illustrated in Figure 1 for N = 8, a register is sequentially reused between the levels of

comparators. The circuit is constructed such that even N/2 outputs 0, 2, 4, 6 of levels 1, 2 are connected with the upper

N/2 inputs of the next levels 2, 3, respectively, and odd N/2 outputs 1, 3, 5, 7 of levels 1, 2 are connected with the lower

N/2 inputs of the next levels 2, 3. Thus, outputs 0, 1, …, 7 depicted on the right-hand side of the register in Figure 1 are

fed back to the register’s inputs so that the lower input line is connected with the output 7, the line above the lower line is

connected with the output 5, etc. Comparison of the networks in Figure 1 suggests that any level executes a similar

operation to the respective iteration in Figure 1. Outputs after the first iteration in Figure 1 are the same as the outputs of

the first level. Subsequent iterations give similar results as the respective level, but the values are reordered as described

above. Such sequential implementation permits the required hardware resources to be reduced. While the network uses

C(N) =  comparators, the circuit in Figure 1 functions with just  comparators. The
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implementation in Figure 1 is regular, easily scalable for any N, and does not involve complex multiplexing schemes. The

minimum and maximum values are found in L(N) =  clock cycles. The results of experiments reported in  show

that the throughput of the networks in Figure 1 is almost the same.

Figure 1. Network of comparators with a feedback register for finding the minimum and the maximum data items.

When two maximum/minimum values have to be identified, the networks can be implemented as is. Wey et al.  suggest

that the number of comparators could be reduced if keeping track of the compared data items at each level. The

respective algorithm for N = 8 is illustrated in Figure 2. Here, each data element requires a small memory, keeping at

most L(N) data items. After every comparison operation, these memories need to be updated for the involved data items.

For example, in the first level of comparators (the left-hand side of Figure 2), the first comparator analyzes the data items

66 and 82. Consequently, the value 82 is written to item 66 memory and the value 66 is written to item 82 memory. After

executing all L(N) comparator levels the largest data item (150) can be read from the bottom horizontal line, as before.

However, to find the second largest value (138) just L(N) − 1 = 2 additional comparators are required that would only

analyze data values recorded in the memory of 150 (i.e., data values 40, 138, and 102 in the example of Figure 2). As the

result, the required number of comparators is reduced to: C(N) = N + L(N) − 2. For big values of N the resources (number

of comparators) are diminished considerably, but additional memory requirements as well as memory management

introduce an overhead. The authors also explore a tree structure search approach in  and conclude that while this

approach achieves higher speed performance, it requires a greater number of comparisons.

Figure 2. Network of comparators with memory for finding two largest data items: 150 (highlighted with yellow color) and

138 (highlighted with orange color).

The bit-searching approach proposed by Tzimpragos et al. in  allows several minimum or maximum values to be found.

Here, the search is not based on comparisons between the elements of a dataset. Instead of this, the items’ bits are

scanned from MSB (Most Significant Bit) to LSB (Least Significant Bit) with the aid of filters constructed from FPGA LUTs.

This scheme works very well for small data items (whose number of bits M ≤ 3–4) but is not efficiently scalable for greater

values of M. The authors report that for M > 4, the previous, described above approaches are less resource-consuming. A

positive aspect of this solution is that the number of needed stages does not increase with the input size N.

2.3. Implementations of Counting Networks

Counting networks can be used efficiently for calculating the Hamming weight (HW) of binary vectors. This operation has

many practical applications, such as binarized neural networks, cryptography, telecommunications, cheminformatics,

bioinformatics and others . Besides simply counting the HW, certain applications require the HW to be compared to

either a fixed threshold or to the HW of another binary vector (possibly of a different length). The respective network-

based implementations will be briefly characterized below.
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Pedroni proposes a network-based Hamming weight comparator circuit in  relying on a triangular bit sorter circuit

composed of M × (M − 1)/2 nodes with two gates (AND and OR) per node. The bit sorter sorts all the bits on the input

binary vector. Then, if an output j, j = 1, 2, …, M is equal to 1, it indicates that the input vector has HW equal to or greater

than j. The author gives a complete parametrizable VHDL code, allowing the design to be tested on an FPGA and also

reports the results of implementation on the EPF10K20C240 FPGA.

Piestrak has improved on the previous results using sorting networks of lower time and cost complexities and suggested

combinational digital comparators built using multioutput threshold circuits . The complexity and latency estimation is

executed but no hardware implementation details are provided.

Parhami also addresses the problem of Hamming weight comparators and proposes efficient circuits based on

accumulative and up/down parallel counters in . First, the author suggests using a network of parallel counters, adding

the sum of M increment signals to a stored count (which has  bits). The HW count part of the design consists of a

tree of increasingly wider ripple-carry adders. A fixed-threshold HW comparator is obtained if the arithmetic negation of the

threshold k, that is, −k, is placed in the count register at start. Then it is only necessary to check whether the final count

result is positive or negative. In the up-down parallel counters, the inputs are interpreted as signed count signals

(increments and decrements), each encoded in 2 bits. These permit the comparison of the HWs of two vectors of the

same length (one vector ‘1’ bits are considered to be positive values +1 and another vector ‘1’ bits are considered to be

negative values −1). The author also presented a detailed cost and latency theoretical analysis of the previous three

designs, concluding that his proposal exhibits better characteristics. No hardware implementation results are however

reported.

Sklyarov et al.  suggest hardware circuits based on counting networks. Several types of counting networks are

analyzed and compared, such as pure combinational, partially sequential with reusable fragments, and pipelined. HW

comparators are also proposed one of which is based on carry-network blocks from  and the other one recurs to LUTs.

A single LUT(n,1), i.e., a LUT with n inputs and 1 output, can be configured to support any threshold k < 2 . It is also

suggested how to deal with k >> 2 . The proposed designs are not based on sorting networks, leading to more modest

hardware resources. This is because, in contrast to sorting networks, the number of the used basic components in

counting networks is incrementally reduced as data move from left to right. Thus, albeit the number of levels is the same

(when compared to the number of levels in the best sorting networks), due to incrementally reduced complexity at each

level, counting networks can be employed for a significantly greater value of M than sorting networks (within the same

target hardware constraints). The authors report the results of experiments on two FPGA/PSoC-based prototyping boards:

the Atlys with the Xilinx Spartan-6 FPGA and ZedBoard with the Xilinx Zynq including Artix-7 FPGA that prove that the

proposed counting networks outperform the previous parallel counter-based designs. It is also illustrated that counting

networks can be mapped efficiently to DSP slices that are available as standard components in modern FPGAs.

LUT-based circuits are explored in  where firstly, two optimized LUT-based designs that permit the Hamming weight to

be determined for M = 8 and M = 36 are suggested. The Hamming weight for M > 36 can be calculated in a tree-based

structure. A combination of counting networks, LUT- and DSP- based circuits is proposed in . It is noticed that LUT-

based circuits and counting networks are the fastest solutions for small values of M (M ≤ 128 bits). The result for bigger

vectors (M >> 128) is produced as a combinational sum (executed in either DPS slices or in a circuit built from logical

slices ) of the HWs of the sub-vectors.
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