Anthelmintic Plants across the Globe

Subjects: Veterinary Sciences

Contributor: Haroon Ahmed , Seyma Gunyakti Kilinc , Figen Celik , Harun Kaya Kesik , Sami Simsek , Khawaja Shafique Ahmad , Muhammad Sohail Afzal , Sumaira Farrakh , Waseem Safdar , Fahad Pervaiz , Sadia Liaqat , Jing Zhang , Jianping Cao

Livestock production plays a key role in the economic development of a country. Helminthiasis caused by a helminth infection is a major constraint in global livestock production. The mortality and morbidity in animal populations owing to infections caused by parasitic helminths are rapidly increasing worldwide. These parasitic worms are categorized into two major groups: roundworms (phylum Nematoda) and flatworms (phylum Platyhelminthes). Among these parasites, gastrointestinal parasites pose a serious threat to livestock production.

ethnomedicine

anthelmintic

medicinal plant helminth

1. Introduction

In recent decades, continuous and intensive use of synthetic anthelmintics has been the only method to control gastrointestinal nematodes. However, resistance to all available anthelmintic drug classes has been reported in livestock species. Resistance to an anthelmintic drug is often observed within a few years of introduction of the drug, indicating a remarkably high rate of resistance development, which likely results from a combination of large, genetically diverse parasite populations, and strong selection pressure for resistance. Plants are an ideal source of naturally occurring compounds that can be used as alternative dewormers in livestock ^[1]. Recently, some anthelmintics have demonstrated loss of efficacy owing to anthelmintic resistance ^[2]; as a result, parasitic load progressively increases, leading to high mortality and morbidity. Traditional use of medicinal plants for controlling helminth infections is more acceptable owing to the eco-friendly nature and sustainable supply of medicinal plants ^[3].

Parasite	Study Model	Plant Family	Plant Name Plant Tissue		Extract	Effective Concentration and Mortality Rate (%)	eference
Carmyerius In spatiosus vitro		Leguminosae	Cassia siamea	Leaves and heartwood	Ethyl acetate extracts	Highest anthelminthic	[<u>4]</u>
		Plumbaginaceae	Plumbago zeylanica	Roots	n-butanol extract	effect	

Parasite	Study Model	Plant Family	Plant Name	Plant Tissue	Extract	Effective Concentration and Mortality Rate (%)	eference
		Plumbaginaceae	Plumbago indica	Roots	hexane, ethyl acetate, and n- butanol extract		
		Combretaceae	Terminalia catappa	Leaves	n-butanol and water extract		
Clonorchis sinensis	ln vitro	Rosaceae	Hagenia abyssinica	Female flowers	Crude extract	5 h (100 μg/mL)	[<u>5]</u>
Echinococcus granulosus (protoscolex)				Fruits and leaves	Hydroalcoholic extracts	100%; killed protoscoleces (50 mg/mL in 10 min)	[<u>1</u>]
	In vitro	Anacardiaceae	Pistacia atlantica	Leaves and fruits	Hydroalcoholic extracts	0.1% concentration of fresh fruit extract (99.09 ± 1.27 mg/mL) and leaf extract (89.25 ± 18.42 mg/mL) had strong scolicidal effects in 360 min	6
	In vitro	Lamiaceae	Salvia officinalis	Aerial parts	Ethanolic extract	100% (6–8 days)	[<u>7</u>]
		Fabaceae	Prosopis farcta	Leaves	Ethanolic extract Crude alkaloids	25% scolicidal activity with a 500 mg/mL dose after 24 h 57% scolicidal activity with a 500 mg/mL dose after 24 h	[8]
		Ranunculaceae	Nigella sativa	Seeds	Essential oil (Thymoquinone)	100% scolicidal activity with a	[<u>9]</u>

	Study Model	Plant Family	Plant Name	Plant Tissue	Extract	Effective Concentration and Mortality Rate (%)		
						1 mg/mL dose after 10 min		
		Cucurbitaceae	Dendrosicyos socotrana	Leaves	Aqueous and methanolic extracts	100% scolicidal activity with a 5000 μg/mL dose after 360 h (methanolic extract) and 408 h (aqueous extract)	[<u>10]</u>	
	Euph	Euphorbiaceae	Jatropha unicostata		Aqueous and methanolic extracts	100% scolicidal activity with a 1000 μg/mL dose after 288 h (both extracts)		
		Berberidaceae	Berberis vulgaris	Fruits	Aqueous extracts	98.7% scolicidal activity with a 2 mg/mL dose after 30 min	[11]	
		Euphorbiaceae	Mallotus philippinensis	Fruits	Methanolic extracts	99% scolicidal activity with a 20 mg/mL dose after 60 min	[<u>12]</u>	
Echinococcus granulosus protoscolex	ln vitro	Meliaceae	Azadirachta indica	Whole plant	Ethanolic extracts	Up to 97% mortality with 30 min of incubation	[<u>13]</u>	
Echinostoma caproni	In vitro	Rosaceae	Hagenia abyssinica	Female flowers	Crude extract	51 h (100 μg/mL)	[<u>5]</u>	
Fasciola hepatica	In vitro	Fabaceae	Acacia farnesiana	Leaves	Hexane, ethyl acetate, and methanolic extracts	0% (500 mg/L)	[<u>14]</u>	
						CAUACIS		

Parasite	Study Model	Plant Family	Plant Name	Plant Tissue	Extract	Effective Concentration and Mortality Rate (%)	Reference						
		Asteraceae	Artemisia absinthium			0% (500 mg/L)							
		Asteraceae	Artemisia mexicana			100% (500 mg/L)							
		Papaveraceae	Bocconia frutescens			100% (500 mg/L)							
		Fabaceae	Cajanus cajan			100% (500 mg/L)							
		Boraginaceae	Cordia spp.			0% (500 mg/L)							
		Malvaceae	Hibiscus rosa sinensis			0% (500 mg/L)							
		Verbenaceae	Lantana camara			100% (500 mg/L)							
		Fabaceae	Leucaena diversifolia			0% (500 mg/L)							
			Meliaceae	Melia azedarach			13% (500 mg/L)						
				Lamiaceae	<i>Mentha</i> sp.			0% (500 mg/L)					
											Lamaceae	Ocimum basilicum	
		Piperaceae	Piper auritum			100% (500 mg/L)							
		Dysphania	Teloxys ambrosioides			0% (500 mg/L)							
<i>Fasciola</i> larvae (sporocyst, redia, and cercaria)	In vitro	Rosaceae	Potentilla fulgens	Dried root powder	Ether, chloroform, methanolic, acetone, and ethanolic extracts	8 h LC50 was 54.20 mg/L for sporocysts, 49.37 mg/L for redia, and 38.13 mg/L for cercaria	[<u>15</u>]						

Parasite	Study Model	Plant Family	Plant Name	Plant Tissue	Extract	Effective Concentration and Mortality Rate (%)	eference						
Fasciola gigantica larvae (sporocysts, redia, and cerceria)	ln vivo	Asparagaceae	Asparagus racemosus	Dried root powder	Ether, chloroform, methanolic, acetone, and ethanolic extracts	2 h LC50 was 79.93%	[<u>16]</u>						
Fasciola gigantica and Taenia solium	In vitro	Euphorbiaceae	Acalypha wilkesiana	Extracts	Methanolic extracts of leaves, stems, and roots	All extracts exhibited anthelmintic activity in vitro	[<u>17]</u>						
Fasciola hepatica	In vitro	Rosaceae	Hagenia abyssinica	Female flowers	Crude extract	1 h (100 μg/mL)	[<u>5</u>]						
Fasciolopsis buski	In vitro	Zingiberaceae	Alpinia nigra	Shoot	Crude alcoholic extract	3.94 ± 0.06 h death time (20 mg/mL concentration)	[<u>18]</u>						
		Fabaceae	Sesbania sesban var. bicolor	Fresh leaves	Methanolic								
Gastrothylax crumenifer	In vitro							Cyperaceae	Cyperus compressus	Roots	extracts of dried plants	Better than praziquantel	[<u>19</u>]
		Asparagaceae	Asparagus racemosus	Roots									
Hymenolepis diminuta and Syphacia obvelata	In vitro In vivo	Asparagaceae	Asparagus racemosus	Roots	Methanolic extract	53.88% and 24% reduction in EPG * and worm counts, respectively (30 mg/mL concentration)	[20]						
Hymenolepis diminuta	In vitro	Cyperaceae	Cyperus compressus	Roots	Methanolic extract	61.74% reduction in the EPG and 24% reduction in worm counts (30 mg/mL concentration)	[21]						

Parasite	Study Model	Plant Family	Plant Name	Plant Tissue	Extract	Effective Concentration and Mortality Rate (%)	eference
Hymenolepis diminuta	In vitro	Fabaceae	Sesbania sesban	Fresh Leaves	Methanolic extract	65.10% reduction in EPG counts, 56% reduction in worm counts (30 mg/mL concentration)	[22]
Paramphistomum gracile	In vitro	Fabaceae	Senna alata, S. alexandrina, and S. occidentalis	Leaf extract	Ethanolic extracts	Dose- dependent effects on motility and mortality	[23]
Paramphistomum microbothrium	In vitro	Zygophyllaceae	Balanites aegyptiaca	Fruits	Methanolic extract	200 µg/ml, at which distinct damage to the whole body surface of the trematodes	[24]
Raillietina echinobothrida	In vitro	Asteraceae	Acmella oleracea	Leaves	Methanolic extract	18.42 ± 0.95 h survival time (20 mg/mL concentration)	[25]
Raillietina spiralis	In vitro	Malvaceae	Thespesia Iampas	Roots	Aqueous extracts	51 ± 0.33 min death time (20 mg/mL concentration)	[<u>26]</u>
Raillietina spiralis	In vitro	Meliaceae	Azadirachta Indica	Leaves	Aqueous extract	46 ± 0.53 min death time (20 mg/mL concentration)	[<u>27]</u>
Raillietina spiralis	In vitro	Scrophulariaceae	Verbascum Thapsus	Fresh Leaves	Methanolic extract	86 ± 5 min death time (20 mg/mL concentration)	[28]
Raillietina spiralis	In vitro	Asteraceae	Achillea wilhelmsii	Fresh Leaves	Methanolic extract	40 min death time (20	[<u>29]</u>

Medicinal plant extracts have long been used against helminth parasites in humans and livestock; however, scientific support for their application and research on the characterization of active composites remains limited ^[40]. Numerous studies have investigated anthelmintic resistance, especially in small ruminants. Most studies have used the fecal egg count reduction test (FECRT), which is based on field management practices. Nevertheless, in vivo experiments on drug efficacy have been conducted in areas with high economic importance. Notably, sheep have been studied more extensively than other livestock species, and a broad spectrum of therapeutics have already been developed for sheep ^[41].

Parasite	Study Model	Plant Family	Plant Name	Plant Tissue	Extract	Effective Concentration A244444 Rate (%)
						mg/mL concentration)
aillietina spiralis	In vitro	Lauraceae [<u>42][44][46]</u>	Cinnamomum camphora	Leaves	Aqueous extracts	47 ± 0.54 min death time [<u>30]</u> (20 mg/mL concentration)
illietina spiralis	In vitro	Verbenaceae [<u>47][48]</u>	Clerodendron inerme	Leaves	Aqueous extracts	45 ± 0.52 min death time [<u>31]</u> (20 mg/mL cor ^[49] htration)
Raillietina tetragona	In [<mark>52</mark> vitro	Poaceae	Imperata cylindrica [<mark>53</mark>]	Underground parts (rhizomes and roots)	Chloroform (medium polar solvent)	Dose- dependent [<u>32]</u> anthelmintic activity
Schistosoma mansoni	In vitro	Apocynaceae	Rauwolfia vomitoria	Stem bark and roots	Ethan <mark>01</mark> c extract	High activity against [<u>33]</u> cercariae and adult worms
Syphacia obvelata	In vitro	Cyperaceae	Cyperus compressus	Roots	Methanolic extract	28.92% reduction in the EPG and 33.85% [21] reduction in worm counts (30 mg/mL concentration)
Syphacia obvelata	In vitro	Fabaceae	[<mark>35</mark> Sesbania sesban	E Fresh leaves	Methanolic extract	EPG and worm counts reduced by 34.32% and 47.08%, respectively (30 mg/mL concentration)
Schistosoma mansoni	ln vivo	Asteraceae	[<mark>21</mark>] Baccharis trimera	Leaves	Crude dichloromethane extract (DE) and aqueous fraction (AF)	98% (AF) [<u>34]</u> 97% (DE)

tic drugs, limited or no risk of resistance development, and environmentally

friendly procedure ^[39]. A major drawback is that, to date, only a small number of anthelmintic compounds such as macrocyclic lactones, cyclic octadepsipeptides, benzimidazoles, and imidazothiazoles have been identified in plants after decades of research ^[55]. Another drawback is the inconsistency between in vitro and in vivo studies on the use of plants as anthelmintics, raising questions regarding their validity and reliability ^[56]. Additionally, neurological effects associated with the dosage and bioavailability of some medicinal plants need to be elucidated before their use. The choice of an appropriate host–parasite system is tricky in in vivo studies because caring for the animal models adequately is expensive, time-consuming, and labor-intensive ^[57]. Other drawbacks include uncertainty about plant efficacy, nonspecific responses, irreproducible preparations, and potential negative

Parasite	Study Model	Plant Family	Plant Name	Plant Tissue	Extract	Effective Concentration and Mortality Rate (%)	Referenc
erpenes block	ше цуга	umine receptors	Tanacetum vulgare	Aerial parts	Crude extract and Essential oil	100%	[<u>35</u>]
Schistosoma mansoni	In vitro	Rosaceae	[<u>59</u>] Hagenia abyssinica	[<u>60]</u> Female flowers	Crude extract	3 h (100 μg/mL)	[5]
Schistosoma	In	Euphorbiaceae	Euphorbia conspicua	Leaves	Leaf extract	100% (100 μg/mL)	[<u>36</u>]
mansoni	vitro	Piperaceae	Piper chaba	Fruits	Methylene chloride extract	Strongest activity	[<u>37</u>]
Taenia solium	In vitro	Asclepiadaceae	Pergularia daemia	Leaves	Ethanolic extract	210.00 ± 0.52 min death time (25 mg/mL concentration)	[<u>38]</u>
					Aqueous extract	221.12 ± 0.61	
^r aenia tetragona	ln vitro	Asteraceae	Acmella oleracea	Leaves	Hexane extract	The lethal concentration (LC50) of the plant extract was 5128.61 ppm on <i>T.</i> <i>tetragona</i> and 8921.50 ppm on <i>A.</i> <i>perspicillum</i>	[<u>39]</u>

medicinal plant extracts against paramphistome parasites, Carmyerius spatiosus. Acta Parasitol. 2019, 64, 566–574.

- Thomsen, H.; Reider, K.; Franke, K.; Wessjohann, L.; Keiser, J.; Dagne, E.; Arnold, N. Characterization of constituents and anthelmintic properties of Hagenia abyssinica. Sci. Pharm. 2012, 80, 433–446.
- 6. Zibaei, M.; Rostamipour, R.; Nayebzadeh, H. Effect of Pistacia atlantica fruit and leaf extracts on hydatid cyst protoscolices. Recent Pat. Antiinfect. Drug Discov. 2016, 11, 53–58.
- 7. Yones, D.A.; Taher, G.A.; Ibraheim, Z.Z. In vitro effects of some herbs used in Egyptian traditional medicine on viability of protoscolices of hydatid cysts. Korean J. Parasitol. 2011, 49, 255.
- Al-Daoody, A.A.; Shareef, A.Y.; Hammoshi, M.H. In Vitro Effects of Ethanolic Extract and Crude Alkaloids of Prosopis farcta Leaves on the Viability of Echinococcus granulosus Protoscolices in Comparison to Mebendazole. RJS Rafidain J. Sci. 2006, 17, 43–52.
- Mahmoudvand, H.; Dezaki, E.S.; Kheirandish, F.; Ezatpour, B.; Jahanbakhsh, S.; Harandi, M.F. Scolicidal effects of black cumin seed (Nigella sativa) essential oil on hydatid cysts. Korean J. Parasitol. 2014, 52, 653.

- Barzinji, R.; Kadir, A.; Mothana, R.A.; Nasher, A.K. Effect of leaf extracts of Dendrosicyos socotrana and Jatropha unicostata on the viability of Echinococcus granulosus protoscoleces. EurAsian J. Biosci. 2009, 3, 122–129.
- 11. Rouhani, S.; Salehi, N.; Kamalinejad, M.; Zayeri, F. Efficacy of Berberis vulgaris aqueous extract on viability of Echinococcus granulosus protoscolices. J. Investig. Surg. 2013, 26, 347–351.
- Gangwar, M.; Verma, V.C.; Singh, T.D.; Singh, S.K.; Goel, R.; Nath, G. In-vitro scolicidal activity of Mallotus philippinensis (Lam.) Muell Arg. fruit glandular hair extract against hydatid cyst Echinococcus granulosus. Asian Pac. J. Trop. Dis. 2013, 6, 595–601.
- Verma, V.C.; Gangwar, M.; Yashpal, M.; Nath, G. Anticestodal activity of endophytic Pestalotiopsis sp. on protoscoleces of hydatid cyst Echinococcus granulosus. Biomed Res. Int. 2013, 2013, 308515.
- Alvarez-Mercado, J.M.; Ibarra-Velarde, F.; Alonso-Díaz, M.Á.; Vera-Montenegro, Y.; Avila-Acevedo, J.G.; García-Bores, A.M. In vitro antihelmintic effect of fifteen tropical plant extracts on excysted flukes of Fasciola hepatica. BMC Vet. Res. 2015, 11, 45.
- Kumar, P.; SUNITA, K.; Singh, R.; Singh, D. Fasciola larvae: Anthelmintic activity of medicinal plant Potentilla fulgens against sporocyst, redia and cercaria. Asian J. Adv. Agric. Res. 2020, 3, 24–30.
- 16. Vishwakarma, A.; Kumar, P. In vivo Anthelmintic Activity of Medicinal plant Asparagus racemosus against Larva of Fasciola gigantica. Res. J. Agri. Sci. 2021, 12, 675–680.
- 17. Onocha, P.; Olusanya, T. Antimicrobial and anthelmintic evaluation of Nigerian Euphorbiaceae plants 3: Acalypha wilkesiana. Afr. Sci. 2021, 11, 85–89.
- 18. Roy, B.; Swargiary, A.; Giri, B.R. Alpinia nigra (Family Zingiberaceae): An anthelmintic medicinal plant of north-east India. Adv. Life Sci. 2012, 2, 39–51.
- 19. Soren, A.D.; Yadav, A.K. In Vitro Anthelmintic Efficacy of Sesbania sesban var. bicolor, Cyperus compressus and Asparagus racemosus against Gastrothylax crumenifer (Trematoda). Proc. Zool. Soc. 2021, 74, 262–267.
- 20. Soren, A.D.; Yadav, A.K. Studies on the anthelmintic potentials of the roots of Asparagus racemosus willd.(Asparagaceae). Clin. Phytoscience 2021, 7, 32.
- 21. Soren, A.D.; Yadav, A.K. Evaluation of in vitro and in vivo anthelmintic efficacy of Cyperus compressus Linn., a traditionally used anthelmintic plant in parasite-animal models. Future J. Pharm. Sci. 2020, 6, 126.
- 22. Soren, A.D.; Chen, R.P.; Yadav, A.K. In vitro and in vivo anthelmintic study of Sesbania sesban var. bicolor, a traditionally used medicinal plant of Santhal tribe in Assam, India. J. Parasit. Dis. 2021, 45, 1–9.

- 23. Roy, S.; Lyndem, L.M. An in vitro confirmation of the ethonopharmacological use of Senna plants as anthelmintic against rumen fluke Paramphistomum gracile. BMC Vet. Res. 2019, 15, 360.
- 24. Shalaby, H.; Soad, N.; Farag, T. Tegumental effects of methanolic extract of Balanites aegyptiaca fruits on adult Paramphistomum microbothrium (Fischoeder 1901) under laboratory conditions. Iran. J. Parasitol. 2016, 11, 396.
- 25. Lalthanpuii, P.; Zokimi, Z.; Lalchhandama, K. The toothache plant (Acmella oleracea) exhibits anthelmintic activity on both parasitic tapeworms and roundworms. Pharmacogn. Mag. 2020, 16, 193.
- 26. Kosalge, S.B.; Fursule, R.A. Investigation of in vitro anthelmintic activity of Thespesia lampas (Cav.). Asian J. Pharm. Clin. Res. 2009, 2, 69–71.
- 27. Rabiu, H.; Subhasish, M. Investigation of in vitro anthelmintic activity of Azadirachta indica leaves. Int. J. Drug Dev. Res. 2011, 3, 94–100.
- 28. Ali, N.; Ali Shah, S.W.; Shah, I.; Ahmed, G.; Ghias, M.; Khan, I.; Ali, W. Anthelmintic and relaxant activities of Verbascum Thapsus Mullein. BMC Complement. Altern. Med. 2012, 12, 29.
- Ali, N.; Shah, S.W.A.; Shah, I.; Ahmed, G.; Ghias, M.; Khan, I. Cytotoxic and anthelmintic potential of crude saponins isolated from Achillea Wilhelmsii, C. Koch and Teucrium Stocksianum boiss. BMC Complement. Altern. Med. 2011, 11, 106.
- 30. Rabiul, H.; Subhasish, M. Investigation of in vitro anthelmintic activity of Cinnamomum camphor leaves. Int. J. Drug Dev. Res. 2011, 3, 295–300.
- 31. Subhasish, M.; Rabiul, H.; Parag, G.; Debasish, D. Investigation of in vitro anthelmintic activity of Clerodendron inerme. Int. J. Drug Dev. Res. 2010, 2, 826–829.
- 32. Lalthanpuii, P.B.; Lalchhandama, K. Phytochemical analysis and in vitro anthelmintic activity of Imperata cylindrica underground parts. BMC Complement. Med. Ther. 2020, 20, 332.
- 33. Tekwu, E.M.; Bosompem, K.M.; Anyan, W.K.; Appiah-Opong, R.; Owusu, K.B.-A.; Tettey, M.D.; Kissi, F.A.; Appiah, A.A.; Penlap Beng, V.; Nyarko, A.K. In vitro assessment of anthelmintic activities of Rauwolfia vomitoria (Apocynaceae) stem bark and roots against parasitic stages of Schistosoma mansoni and cytotoxic study. J. Parasitol. Res. 2017.
- de Oliveira, R.N.; Rehder, V.L.G.; Oliveira, A.S.S.; Jeraldo, V.d.L.S.; Linhares, A.X.; Allegretti,
 S.M. Anthelmintic activity in vitro and in vivo of Baccharis trimera (Less) DC against immature and adult worms of Schistosoma mansoni. Exp. Parasitol. 2014, 139, 63–72.
- 35. Godinho, L.S.; de Carvalho, A.; Soares, L.; Barbosa de Castro, C.C.; Dias, M.M.; Pinto, P.d.F.; Crotti, A.E.M.; Pinto, P.L.S.; de Moraes, J.; Da Silva Filho, A.A. Anthelmintic activity of crude extract and essential oil of Tanacetum vulgare (Asteraceae) against adult worms of Schistosoma mansoni. Sci. World J. 2014.

- dos Santos, A.F.; de Azevedo, D.P.; dos Santos Mata, R.d.C.; de Mendonça, D.I.D.; Sant'Ana, A.E.G. The lethality of Euphorbia conspicua to adults of Biomphalaria glabrata, cercaria of Schistosoma mansoni and larvae of Artemia salina. Bioresour. Technol. 2007, 98, 135–139.
- Atjanasuppat, K.; Wongkham, W.; Meepowpan, P.; Kittakoop, P.; Sobhon, P.; Bartlett, A.; Whitfield, P.J. In vitro screening for anthelmintic and antitumour activity of ethnomedicinal plants from Thailand. J. Ethnopharmacol. 2009, 123, 475–482.
- 38. Kumar, V.K.; Kumar, P.; Venkatachalam, T. Investigation of anthelmintic activity of Pergularia daemia leaves. Pharmacophore 2014, 5, 44–48.
- Lalthanpuii, P.B.; Lalchhandama, K. Chemical composition and broad-spectrum anthelmintic activity of a cultivar of toothache plant, Acmella oleracea, from Mizoram, India. Pharm. Biol. 2020, 58, 393–399.
- 40. Zangueu, C.B.; Olounlade, A.P.; Ossokomack, M.; Djouatsa, Y.N.N.; Alowanou, G.G.; Azebaze, A.G.B.; Llorent-Martínez, E.J.; de Córdova, M.L.F.; Dongmo, A.B.; Hounzangbe-Adote, M.S. In vitro effects of aqueous extract from Maytenus senegalensis (Lam.) Exell stem bark on egg hatching, larval migration and adult worms of Haemonchus contortus. BMC Vet. Res. 2018, 14, 147.
- 41. Salgado, J.A.; Santos, C.d.P. Overview of anthelmintic resistance of gastrointestinal nematodes of small ruminants in Brazil. Rev. Bras. Parasitol. Vet. 2016, 25, 3–17.
- 42. von Samson-Himmelstjerna, G. Molecular diagnosis of anthelmintic resistance. Vet. Parasitol. 2006, 136, 99–107.
- Demeler, J.; Küttler, U.; El-Abdellati, A.; Stafford, K.; Rydzik, A.; Varady, M.; Kenyon, F.; Coles, G.; Höglund, J.; Jackson, F. Standardization of the larval migration inhibition test for the detection of resistance to ivermectin in gastro intestinal nematodes of ruminants. Vet. Parasitol. 2010, 174, 58–64.
- 44. Beech, R.; Skuce, P.; Bartley, D.; Martin, R.; Prichard, R.; Gilleard, J. Anthelmintic resistance: Markers for resistance, or susceptibility? Parasitology 2011, 138, 160–174.
- 45. Demeler, J.; Küttler, U.; von Samson-Himmelstjerna, G. Adaptation and evaluation of three different in vitro tests for the detection of resistance to anthelmintics in gastro intestinal nematodes of cattle. Vet. Parasitol. 2010, 170, 61–70.
- 46. Kaplan, R.M. Drug resistance in nematodes of veterinary importance: A status report. Trends Parasitol. 2004, 20, 477–481.
- 47. Mukherjee, N.; Mukherjee, S.; Saini, P.; Roy, P.; P Sinha Babu, S. Phenolics and terpenoids; the promising new search for anthelmintics: A critical review. Mini Rev. Med. Chem. 2016, 16, 1415–1441.

- 48. Ramirez, B.; Bickle, Q.; Yousif, F.; Fakorede, F.; Mouries, M.-A.; Nwaka, S. Schistosomes: Challenges in compound screening. Expert Opin. Drug Discov. 2007, 2, S53–S61.
- 49. Geary, T.G.; Sakanari, J.A.; Caffrey, C.R. Anthelmintic drug discovery: Into the future. J. Parasitol. 2015, 101, 125–133.
- 50. Castelli, M.V.; Lodeyro, A.F.; Malheiros, A.; Zacchino, S.A.; Roveri, O.A. Inhibition of the mitochondrial ATP synthesis by polygodial, a naturally occurring dialdehyde unsaturated sesquiterpene. Biochem. Pharmacol. 2005, 70, 82–89.
- 51. Tritten, L.; Braissant, O.; Keiser, J. Comparison of novel and existing tools for studying drug sensitivity against the hookworm Ancylostoma ceylanicum in vitro. Parasitol. 2012, 139, 348–357.
- 52. Newman, D.J.; Cragg, G.M.; Kingston, D.G. Natural products as pharmaceuticals and sources for lead structures. Pract. Med. Chem. 2008, 159–186.
- 53. Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477.
- 54. Garcia-Bustos, J.F.; Sleebs, B.E.; Gasser, R.B. An appraisal of natural products active against parasitic nematodes of animals. Parasit Vectors. 2019, 12, 306.
- 55. Castagna, F.; Piras, C.; Palma, E.; Musolino, V.; Lupia, C.; Bosco, A.; Rinaldi, L.; Cringoli, G.; Musella, V.; Britti, D. Green veterinary pharmacology applied to parasite control: Evaluation of Punica granatum, Artemisia campestris, Salix caprea aqueous macerates against gastrointestinal nematodes of sheep. Vet. Sci. 2021, 8, 237.
- Castagna, F.; Britti, D.; Oliverio, M.; Bosco, A.; Bonacci, S.; Iriti, G.; Ragusa, M.; Musolino, V.; Rinaldi, L.; Palma, E. In vitro anthelminthic efficacy of aqueous pomegranate (Punica granatum L.) extracts against gastrointestinal nematodes of sheep. Pathogens 2020, 9, 1063.
- 57. Carvalho, V.; Ramos, L.d.A.; da Silva, C.; Nebo, L.; Moraes, D.; Da Silva, F.; Da Costa, N.; Junior, R.d.O.R.; De Souza, L.; Rodrigues, R. In vitro anthelmintic activity of Siparuna guianensis extract and essential oil against Strongyloides venezuelensis. J. Helminthol. 2020, 94, e50.
- 58. Soares, A.M.; Oliveira, J.T.; Rocha, C.Q.; Ferreira, A.T.; Perales, J.; Zanatta, A.C.; Vilegas, W.; Silva, C.R.; Costa-Junior, L.M. Myracrodruon urundeuva seed exudates proteome and anthelmintic activity against Haemonchus contortus. PLoS ONE 2018, 13, e0200848.
- 59. GS, R.I.D.; Yadav, J.; Sapate, R.; Mali, H. In vitro Anthelmintic Activity of crude extract of flowers of Bougainvillea Spectabilis Wild against Pheretima Posthuma. Int. J. Pharm. Pharm. Sci. 2020, 17, 1–18.
- 60. Braga de Oliveira, M.I.; Rodrigues Brandão, F.; Rocha da Silva, M.J.; Carvalho Rosa, M.; Santana Farias, C.F.; Silva dos Santos, D.; Majolo, C.; Oliveira, M.R.d.; Chaves, F.C.M.; Bizzo, H.R. In

vitro anthelmintic efficacy of essential oils in the control of Neoechinorhynchus buttnerae, an endoparasite of Colossoma macropomum. J. Essent. Oil Res. 2021, 33, 509–522.

Retrieved from https://encyclopedia.pub/entry/history/show/91302