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Unmanned Aerial Vehicles (UAVs) can revolutionize livestock herding and management. As a result, there is an increasing

scientific interest in using UAVs to manage livestock. UAVs can be used to control livestock grazing areas and remote

sensing of these animals.
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1. Introduction

In recent years, most governments have defined livestock grazing areas/fields or paths, with the effectiveness of most

herding operations relying on the extraction of information from aerial pictures . In a farm context, unmanned air vehicles

(UAVs) are typically operated at human height or a low to medium altitude, giving them the same or wider angles of view

as humans. As established by the regulatory body, grazing field mapping can be used for UAV operations due to the

similarity of viewpoint with people at eye level. However, some computational and scientific issues are unique to UAV

operations. One of these issues is the minimum time coverage of ground regions utilizing a group of UAVs dubbed Flying

Adhoc Network (FANET) outfitted with image sensors . As a result, this research proposes a way for using UAVs to

cover and sense ground areas. It will concentrate on practical issues arising only during vehicle deployment. The number

of UAVs utilized in the task, for example, is determined by the area’s size and layout, the UAV’s maximum flight time and,

more crucially, the time required to prepare and launch the UAV. Figure 1 depicts the conceptual diagram. The operation

of multiple UAVs to achieve adequate coverage is dependent on the mode of communication amongst the UAVs. It is

critical to ensure that the communication efficiency among sensor-equipped devices is at the highest level to accomplish a

flawless operation of UAV-based livestock management . These UAVs’ communication is typically affected by the speed

of the UAVs within the grazing field. Nonetheless, with the high speed of UAVs, a high coverage area is said to be

achieved because the UAVs are moving at a faster speed.

Figure 1. Conceptual Framework.

Some studies have used aerial pictures (satellite imagery) and UAV-based communication systems to examine farm

animal tracking and monitoring for applications such as grazing distribution monitoring, pasture usage, domestic livestock

management, and livestock behavior. Grazing distribution monitoring has attracted increased attention, intending to

manage individual animals through continuous and real-time monitoring of their perimeter coverage during grazing as well

as their health, welfare, output, and environmental effects. The data collected during the livestock monitoring procedure

contributes to the long-term viability of the agroecosystem by providing herders with timely and reliable information about

how their animals behave on the farm . Nonetheless, it is known that satellite usage is applicable for animal tracking and

monitoring through space-retrieved imagery that can analyze cattle productivity on different pastures. However, the use of
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drones is justified when the angle matters. Some uses of drones for livestock management include spotting trespassing

hunters, farming illegal activities, and controlling herder operations.

2. Livestock Management on Grazing Field

Livestock management in widespread production systems may be thought-provoking, particularly in huge regions. The

use of UAVs to gather images from the region of concern is rapidly becoming a feasible alternative. Nonetheless, proper

processes for extracting pertinent data from the images are still rare. Conventionally, the recognition of livestock through a

UAV is centered on a simple process involving a video recording of the pasture where the livestock is spotted and

calculated manually by a human viewer. This practice was found to be valuable in the detection and counting of cattle in a

quarantine environment . However, this method is manual and always involves the presence of a human observer. The

authors in the work of  present the parameters and key limitations, current regulations, potential requirements, and

challenges for operating UAVs in smart agriculture. To computerize the livestock detection and counting method, the

number of livestock was added up in the video frame by detaching its image from the background and applying

thresholding on each image frame of the video sequence . The ability of Unmanned Aircraft Systems (UAS)

overflights for cattle surveillance was assessed in . The information attained from the Unmanned Aircraft System (UAS)

image was used to model the cattle distribution, and the outcomes were related to bio-logged cattle. The prospect of using

UAV video surveillance to predict the food intake of non-nursing beef cows was examined where the cow feeding pattern

was determined from the processed video files. The results suggest that UAV surveillance could be vital in monitoring cow

feeding behavior . The work of  suggested a general smart video surveillance system and studied some glitches in

cow performance analysis using an intelligent image-based monitoring system framework with a hidden Markov process.

while the authors in the work of  suggested a new robotic animal herding system centered on a system of independent

barking drones. Such a system aims to substitute old herding approaches so that an enormous amount of farm animals

can be speedily collected from a sparse status and then driven to a selected place. Vayssade et al. propose a method to

process images taken by a commercial drone to automate the tracking of animal activities using a combination of

thresholding and supervised classification methods . Jung et al. use a Proportional Integral Derivative (PID) controller

on four quadrotor UAVs to guide four animals into their pen within the minimum time by creating noises of predators

modeled with an exponential function to provide a solution to the cattle roundup problem .

The geographical proximity used to examine grazing behavior and social structure is a critical indicator of performance in

cow behavior. As such, Mufford et al. developed a competent way to compute the spatial proximity of beef cattle,

employing UAV-based image acquirement and photogrammetric analysis. Still-frames pulled out from the UAV video

screenshots were used to produce Orth mosaics, revealing that groups of correlated sets were nearer than non-correlated

ones . Sun et al. offered a real-world method that used UAVs and verified its use at a distinctive household pasture to

examine the hourly spatial distribution of each yak . Favier et al. explored the use of UAVs to detect and round up

sheep by developing a prototype controlled from a laptop base station running on LABVIEW . Jasper Brown et al.

discovered the relationship between object detector performance and spatial degradation for livestock. Factual data was

established using focus drone images and then down sampled to various ground sample distances (GSDs).

Apart from the simple method of livestock detection, advancements in Artificial Intelligence (AI) and Machine Learning

(ML) have allowed researchers to detect livestock using a pre-trained Convolutional Neural Network (CNN)-based

architecture. For instance, an adjusted version of R-CNN was employed to identify and count livestock on a grazing field

. In this method, a selective search algorithm was used to generate a region proposal and then applied a CNN to

extract the features in the region, which were then later classified using a Support Vector Machine (SVM). The confidence

value was obtained by applying it to a linear bounding box. Kate et al. scrutinized twelve sheep’s habits and normal

responses to a drone to fit mathematical models of shepherding to the new dimension. The model targets make it realistic

for AI to advance the independence of farmers in shepherding above the ground . Barbedo et al. proposed a cattle

counting scheme incorporating a deep learning model for the rough animal position and color space manipulation to

increase the contrast between animals and the background . Jayme Garcia Arnal Barbedo et al. investigated the

prospect of utilizing an incline angle to increase the expanse of the acquired image in cattle monitoring. This feature was

realized by creating a model for animal detection using Deep Convolutional Neural Networks. Fact findings show that

oblique images can be magnificently utilized in some circumstances, but certain real restrictions must be solved for the

method to be attractive . Andrew et al. recommend a deep neural network method for livestock recognition employing

UAVs with onboard deep learning inference . Soares et al. suggested a technique for identifying and counting cattle, in

above-the-ground images acquired by UAVs, based on CNNs and a graph-based optimization technique to remove

detected duplicated images . Shao et al. propose a cattle detection and counting system based on CNNs using aerial

images taken by a UAV .
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Owning that the future routing protocols depend on the nature of the communication link, the works in  present the

design of an interface protocol for an indoor Flying Ad-hoc Network-specific routing protocol, using light fidelity as a

communication link. The focus was to achieve high throughput. However, practical routing problems encountered during

UAV operations are not considered. To solve practical routing problems encountered during UAV operations, ref. 

proposed an optimized solution for the problem of minimum time coverage of ground areas using multiple UAVs with

image sensors. This is achieved by determining the geographic coordinates a single UAV would cover in a minimum time

and then formulating mixed-integer linear programming to route the UAVs over the geographic area. The UAVs required to

cover a particular area could then be selected. However, the UAV routing strategy does not consider possible collisions

among the UAVs. Hence, to avoid link breakage during information transfer, the communication path between multiple

UAVs is optimized to improve communication links in flying Adhoc networks using smell agent optimization and the

Particle Swarm Optimization (PSO) algorithm .
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