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A biodegradable osteosynthesis system should meet two intertwined criteria to be used as an osteosynthesis system: (1)

the biomaterial needs to be biocompatible with the host tissue and (2) the mechanical properties should be sufficient for

stable fixation of fracture or osteotomy segments during the surgical procedure (primary stability) and during the

degradation of the biomaterial, with a gradual transfer of stress to the healing bone

Keywords: biocompatible materials ; absorbable implants ; polymers ; orthopaedic fixation device ; fracture fixation ;

reconstructive surgical procedures

1. Biocompatibility

1.1. Initial Host Response

Implanted materials evoke an initial host response after implantation that includes inflammation, proliferation and tissue

remodeling, and, in the case of biodegradable biomaterials, is affected by the degradation products . This host response

is mediated by both the innate and adaptive immune systems. Macrophages are the most important innate immune cells

during the host response and also play a main role in the outcome of biodegradable implants . The phenotype of

macrophages ranges from pro-inflammatory M1 macrophages to anti-inflammatory M2 macrophages . After tissue

injury, M1 macrophages secrete several inflammatory mediators such as interleukin-1 (IL-1) and tumor necrosis factor-α

(TNF-α) to initiate the healing process . After the initial inflammatory phase, macrophages switch to a wound-healing

phenotype (M2a), secreting growth factors (e.g., platelet-derived growth factor) that promote angiogenesis and cell

proliferation . Subsequently, macrophages switch to an anti-inflammatory phenotype (M2c) and produce anti-

inflammatory cytokines (e.g., IL-10) that leads to the inhibition of the inflammatory response .

The adaptive immune system is also involved in the host response. Through antigen presentation, macrophages and

dendritic cells can activate CD4   T-cells of the adaptive immune system. T helper 1 (T 1) cells can induce M1

macrophages by producing interferon-γ and IL-2 . Subsequently, M1 macrophages can produce cytokines and

chemokines (e.g., IL-12, CXC-chemokine ligand 9) that intensify the T 1 response by recruiting additional T 1 cells . In

contrast to T 1 cells, T 2 cells produce anti-inflammatory cytokines (e.g., IL-4 and IL-10) that induce polarization of

macrophages towards M2 macrophages. M2 macrophages in turn secrete cytokines (e.g., CC-chemokine ligand 17) that

recruit additional T 2 cells that temper the inflammatory response . Imbalances of M1 over M2 macrophages or

prominent presence of M1 macrophages may lead to (chronic) foreign body reactions (e.g., a sterile abscess formation

with fibrous encapsulation) . Therefore, it is essential that a well-controlled and timely switch of M1 to M2 macrophages

occurs as this then leads to implant degradation and tissue remodeling, to eventually replace the implant by host tissue

(biodegradable systems) or to controlled fibrous encapsulation (titanium systems) .

1.2. Synthetic Biodegradable Polymers

The most commonly used (co)polymers in biodegradable osteosynthesis systems consist of poly(α-esters) such as poly(L-

lactic acid) (PLLA), poly(D,L-lactic acid) (PDLLA), poly(lactic-co-glycolic acid) (PLGA), or poly(L-co-D,L-lactic acid-co-

trimethylene carbonate) (P(LLA-co-DLLA-co-TMC))  .

Biodegradation

Synthetic polymers undergo biodegradation via two different modes depending on the rates of bond cleavages and water

diffusion into the polymer: bulk and surface degradation. In bulk degradation, the degradation occurs in the complete

implant resulting in a decrease in molecular weight and molecular strength with time. Since the complete implant

degrades at a similar rate, disintegration of the implant with generation of polymeric debris can occur. In contrast, surface

[1]

[1]

[2][3]

[1][4]

[4][5]

[6]

+
H

[7]

H H
[1]

H H

H
[7]

[1]

[1]

[1]



degradation occurs on the surface of the implant, resulting in a decrease in size and mass of the implant with time. Here,

the molecular weight and mechanical properties of the material remain relatively unchanged .

Extracellular degradation of poly(α-esters) occurs through hydrolysis (two phases), enzymatic degradation, and oxidation.

During hydrolysis, cleavage of the ester bonds by water results in oligomers and monomers, such as lactic acid and

glycolic acid (primary hydrolysis) , that can enter the tricarboxylic-acid cycle (secondary hydrolysis) to form carbon

dioxide and water that can be excreted in the lungs or via urine. Secondary hydrolysis is the rate-limiting step and

depends highly on the crystallinity and hydrophobicity of the intermediate products . Enzymes secreted by

macrophages and derived from the blood can contribute to hydrolysis through extracellular hydrolysis . Macrophages

can also phagocytize biomaterial particles. In addition, inflammatory cells (e.g., macrophages and neutrophils) can induce

depolymerization of polymers by oxidation via the release of reactive oxygen species . Macrophages can also undergo

fusion to improve their efficiency and form multinucleated giant cells  which can remain for up to 24 months after

implantation . Although the phagocytosis capacity of multinucleated giant cells is reduced compared to macrophages,

the capacity of extracellular degradation is increased by secreting higher concentrations of enzymes and reactive oxygen

species into the interface between the multinucleated giant cells and implant .

Late Host Response

Biodegradable osteosynthesis systems should, preferably, be completely resorbed within 12 months . However, foreign

body reactions to polymeric biodegradable materials remain a major concern, even years after implantation . Factors

that influence foreign-body reactions are implant related (e.g., polymer composition, crystallinity, geometry, and surface

topology), recipient related (e.g., blood supply), and plate location related (e.g., epiperiosteal versus subperiosteal) 

.

The progression of the host response is affected by the acidic degradation products of the poly(α-esters). A lowering in pH

intensifies the inflammatory response that results in fibrous encapsulation of the implant . Furthermore, the acidic

degradation products are autocatalytic, resulting in progressive degradation of the remaining polymers and an increase in

the inflammatory response. Additionally, bulk degradation leads to fragmentation of the polymer that may result in

phagocytized particles within the fibrous tissue . Demineralization of the surrounding bone can occur whenever the

degradation occurs too quickly and the surrounding tissue fails to eliminate the degradation products . Therefore, the

possibility to induce a foreign body reaction is dependent on an equilibrium between the levels of degradation products,

the degree of fibrous encapsulation, and the ability of the host to eliminate the degradation products . Short-term foreign

body reactions are mainly caused by fast-degrading polymers (e.g., PGA)  while delayed foreign body reactions are

often associated with slow-degrading polymers (e.g., PLLA) with high crystallinity and crystalline degradation fragments

. Foreign body reactions to polymeric biodegradable materials can occur to particle sizes of <2 µm, even years

after the implantation (Table 1) .

Currently, two main hypotheses regarding the etiology of foreign body reactions to these synthetic polymeric biomaterials

exist. After implantation, the biodegradable polymers are encapsulated by fibrous tissue that acts as a semi-permeable

membrane . The first hypothesis is that, as the polymer degradation continues over time, the size of the polymeric

fragments decreases while the number of particles increases. These particles cannot pass the semi-permeable

membrane. Subsequently, the osmotic pressure within the area surrounded by the fibrous layer increases and this results

in a clinically observable swelling that, without an intervention, remains . An alternative hypothesis is that, eventually,

the acidic polymeric fragments become small enough to pass the membrane. This results in a decrease in pH of the

surrounding tissues which then causes excessive sterile inflammation  accompanied by phagocytosis of any residual

fragments . However, since crystalline fragments are stable and more resistant to further hydrolytic degradation, they

accumulate in the macrophages and multinucleated giant cells, and then remain in situ. Furthermore, extra- and

intracellular residual fragments can lead to the accumulation of crystalline oligomeric stereo-complexes over time that are

resistant to further hydrolytic degradation . These two hypotheses could also occur simultaneously.

Differences in vascularization also contribute to inducing foreign body reactions. Sufficient vascularization is necessary for

adequate bone healing, but it is also essential to eliminate the acidic degradation products of the hydrolyzed poly-α-esters

(e.g., polylactide), thereby affecting the equilibrium between the levels of degradation products and the ability of the host

to eliminate the degradation products . Accumulation of acidic degradation products may result in decreased pH ,

bone demineralization , and may damage the surrounding cells such as macrophages . Whenever

micromovements are present, fibrous encapsulation can entrap the acidic degradation products, resulting in reduced

elimination of the degradation products . The acidic degradation products have an autocatalytic effect and cause further

degradation of the remaining polymer resulting in a vicious circle that eventually leads to a more severe inflammatory
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reaction . Since the mandible has lesser vascularization and is exposed to higher forces, mandibular osteosyntheses

are more prone to these (accumulating) effects compared to those in other parts of the facial skeleton.

In a recent study, the long-term (i.e., up to 4-year follow-up) biocompatibility and degradation of four commonly used

biodegradable copolymeric osteosynthesis systems was compared using a goat model . The study included the

BioSorb FX [poly(70LLA-co-30DLLA)], Inion CPS [poly([70–78.5]LLA-co-[16–24]DLLA-co-4TMC)], SonicWeld Rx

[poly(DLLA)], and LactoSorb [poly(82LLA-co-18GA)] biodegradable osteosynthesis systems. The copolymer of the

SonicWeld Rx system was the only one that was amorphous; all the other assessed systems were semi-crystalline. All the

biodegradable systems were safe to use and well-tolerated. The SonicWeld Rx system showed the most predictable

degradation profile. In addition, together with the LactoSorb system, new bone percentages similar to negative controls

were observed after 18 months while the two other included systems reached these levels after 36 months. However,

nanoscale residual polymeric fragments, predominately accumulated in adipocytes, were observed at every system’s

assessment.

Since the crystalline regions of synthetic (co)polymers, the intermediate degradation products and the crystalline

oligomeric stereo-complexes that can be formed in vivo over time are hydrophobic , this could explain the

remarkable accumulation of polymeric birefringent fragments in adipocytes within the medullary bone cavity up to 4-year

follow-up  . Similar birefringent fragments, derived from as-polymerized PLLA, were observed in a case report  and

experimental studies up to the 5-year follow-up . Such particles were found intracellular after 3 and 4.5 years of

implantation, although the particles decreased in size over time . Crystalline fragments derived from as-polymerized

PLLA can induce foreign body reactions even up to 5.7 years after implantation . Another clinical study that focused

on the efficacy of an osteosynthesis system composed of unsintered hydroxyapatite/PLLA composite, with a 12-month

follow-up, showed that the removed symptomatic systems included up to 65% crystalline regions in the explanted

polymers . In a study that implanted the Resorb X osteosynthesis system (PDLLA) at the condyle of sheep mandibles,

no foreign body reactions and complete bone formation were observed after 12 months . Another study showed

complete bone formation 18 months after implanting the LactoSorb system in the maxillofacial area of Göttingen minipigs

without signs of foreign body reactions . In contrast, after implanting the Inion CPS system in sheep, the system was

surrounded by a fibrous capsule with granulomatous foreign body reactions after 52 weeks . In the literature, foreign

body reactions have predominately been reported for biodegradable osteosyntheses with a high proportion (i.e., >70%) of

PLLA  or poly(glycolic acid) (PGA) . More amorphous copolymers such as PDLLA (e.g., 50LLA/50DLA ratio)

are more hydrophilic, and degrade and resorb more quickly and predictably . These findings, as well as those of

different (pre-)clinical studies , emphasize that the (co)polymers used in biodegradable systems should be

completely amorphous. Future research should focus on amorphous (co)polymers with a minimum follow-up of ≥24

months so that a proper degradation assessment can be performed. Furthermore, it remains unknown whether the

observed nanoparticles after 4-year follow-up  may be harmful in the long run (i.e., >4 years). Since microplastics have

been shown to be toxic in vitro, with a potential impact on human health (e.g., effects on the gastrointestinal tract, lungs,

immune system, and blood components) , the effects of the observed nanoparticles need further research.

Other than (co)polymer composition, the geometry and surface topography of the implanted materials also affect

biocompatibility in vivo . Thick biomaterials, especially with points and sharp edges, can increase the risk of foreign

body reactions . In contrast, thinner biomaterials, as well as smaller sized polymeric particles used to engineer a

biomaterial, allow for quicker degradation and a lower risk of foreign body reactions . A smooth well-contoured

shape without acute angles induced macrophage polarization towards macrophages with an immune regulatory

phenotype . In vivo biocompatibility of medical devices, such as implants, can be significantly improved by tuning the

spherical dimensions . Furthermore, low implant volume reduces the amount of acidic degradation products and thus

reduces the risk of (late) foreign body reactions . The fact that screws possess acute angles, while welded pins do not,

may explain the favorable degradation profile of the SonicWeld Rx system compared to the BioSorb FX, Inion CPS and

LactoSorb biodegradable systems . Novel biodegradable system development should incorporate geometry

and surface topography into the design-phase as these characteristics are tunable and may be efficient ways to decrease

foreign body reaction risk, hasten degradation, enhance quicker bone formation, and balance the degradation and

regeneration equilibrium (Table 1) .

Table 1.  Different aspects of biodegradable osteosynthesis systems accompanied with the ideal properties and the

potential solutions to accomplish these properties.
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Aspect Ideal Properties Method Potential Solutions Refs

Surgical
handling

Easy perioperative adaptation of
plates

3D engineering Patient specific osteosynthesis
systems

Production process Plate adaption at room temperature

No risk of perioperative screw
breakage

Alternative
application method

Ultrasound welding of thermoplastic
pins instead of using conventional

screws

Elastic
modulus of
materials

Enough elastic modulus to avoid
micromovements, but not stiffer

than bone to avoid stress-
shielding of the underlying bone

Production process

Create composites to tailor the elastic
modulus to the application of interest

Self-reinforcing of polymers to
increase the elastic modulus of

systems

Alternative
application method

Ultrasound welding of thermoplastic
pins to increase the maximum tensile
load and stiffness, and side-bending

stiffness

Bacterial
infection

Preventing bacterial adhesion to
implant surface Coating Hydrophobic coatings

Eliminating surrounding bacteria
without antibiotics

Surface
modification

Adjusting the nano-scale surface
topography (e.g., pillars on the

surface)

Eliminating surrounding bacteria
with local antibiotics

Polymer coating containing stabilized
gas bubbles loaded with antibiotics
that can be released locally using

ultrasound

Foreign body
response

(FBR)

Materials that do not elicit an FBR

Selection of
materials

Materials with non-toxic degradation
products (e.g., derived from silk)

Production process Avoid thick materials, especially with
points and sharp edges

Tailor the host response so that
FBR are avoided Production process Avoid particle sizes < 2 µm

Avoid micromovements (max. 28–
150 µm), that can result in fibrous

encapsulation of the implant

Selection of
materials,

production process,
and 3D engineering

Osteosynthesis system with material
properties that matches with the

mechanical properties of the target
tissue (e.g., by using ultrasound

welding)

Degradation
profile

Predictable degradation,
preferably after 3–12 months

3D engineering Thinner materials degrade quicker

Production process

Balance the degradation and
regeneration equilibrium by, e.g.,

using L- and D-chirality or by
copolymerization

1.3. Biodegradable Metals

Biodegradable metals are promising alternatives to polymeric osteosynthesis systems due to their mechanical properties

that are closer to bone than (co)polymeric materials  and their less harmful degradation products. The tensile strength,

elastic modulus, axial pull-out force, and maximum torque of magnesium alloys are higher than that of (co)polymers, but

lower than that of titanium alloys . To date, three biodegradable metal groups have been researched to be used for

biodegradable osteosynthesis systems, i.e., magnesium (Mg), iron (Fe), and zinc (Zn) and their alloys . Mg-based

biodegradable metals have been studied most extensively. The available research for Fe- and Zn-based degradable

metals is limited due to the low degradation rate of Fe-based metals while Zn-based metals have been introduced only

recently .

Biodegradation

Biodegradable metal degradation is driven by anodic and cathodic reactions that result in the production of oxides,

hydroxides and/or hydrogen gas . Once biodegradable metals come into contact with body fluids, they are oxidized

into metal cations combined with producing electrons via an anodic reaction. The electrons generated by implanting Mg-
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based biodegradable metals are consumed by cathodic reactions with water to form hydrogen gas and hydroxide. For Fe-

and Zn-based metals, oxygen reduction only produces hydroxide without hydrogen gas. Hydroxide then reacts with the

adjacent metal to form a metal-hydroxide layer on the surface of the implant. The protective layer can be eroded by high

levels of chloride ions in the body fluids resulting in continuation of the degradation process. However, in Fe-based

biodegradable metals, the protective layer consists of Fe(OH) , Fe(OH) , and Fe O , that inhibits further degradation. As

a result, the degradation rate of Fe-based metals is very slow . These ongoing reactions cause an oversaturation of

calcium and phosphate ions in the surrounding body fluids that result in a layer of calcium-phosphate on the metal-oxide

layer, that is able to induce bone formation .

A major challenge of biodegradable metals, particularly Mg-based materials, is the unpredictable degradation profile in

vivo with subcutaneous emphysema due to the accumulation of hydrogen gas . The degradation rate of biodegradable

metals can be controlled by tailoring the microstructure, surface properties and coatings of the materials. For example, a

recent study included gallium (i.e., a bone resorption inhibitor) in a magnesium alloy and showed promising results with

inhibition of bone porosity formation, mechanical properties matching cortical bone, and low corrosion rate resulting in less

hydrogen gas formation compared to other available magnesium alloys for orthopedic surgery . In addition, surface

modifications and coatings can be used to tune the degradation rates. For example, Mg-alloys and polymers can be

combined to form Mg–polymer composites. These composites include high strength and elastic modulus derived from

biodegradable metals while the surrounding biodegradable polymer matrix improves the corrosion resistance of the

underlying metal .

Late Host Response

The degradation products of degradable metals such as hydroxide ions, hydrogen gas, metal-oxides, abraded particles,

and calcium-phosphate affect the host response . In a bone environment, the formation of the calcium-phosphate

layer induces new bone deposition, making it a unique feature as base material for an osteosynthesis system. In addition,

the Mg-ions can induce new bone formation in cortical bone by increasing calcitonin gene-related peptide 1 levels in

periosteum-derived stem cells . However, current Mg-based biodegradable metals often show a burst release of Mg-

ions that can lead to excess formation of hydrogen gas resulting in gas pockets, tissue displacement, and subcutaneous

emphysema. The fast degradation rate can also induce osteolysis, hemolysis, and rapid reduction of the mechanical

properties .

1.4. Silk

Silk is the most recent addition to biodegradable materials . Silk is a natural biodegradable polymer that is usually

derived from the silkworm Bombyx mori. Although the evidence is still limited to pre-clinical evidence, the current evidence

shows excellent biocompatibility and unique mechanical properties combined with easily and environmentally friendly

processing into mechanically robust three-dimensional bulk materials with excellent machinability . To date, it is the

only natural polymer that has been used to prepare an osteosynthesis system .

Biodegradation

As with most natural polymers, silk is degraded enzymatically, e.g., by protease XIV, matrix metalloproteinase and

collagenase . These enzymes cleave silk protein chains into peptide fragments with decreased molecular weight and

strength . Immune cells, especially macrophages and FBGCs, play an important role during degradation of silk.

Immune cells mediate silk degradation through (1) phagocytosis and (2) extracellular degradation mediated by proteolytic

enzymes derived from macrophages and FBGCs. The degradation products are tightly packed aggregates or amino acids

for metabolism . The degradation time depends on implant-related factors (e.g., molecular weight, porosity, crystallinity,

and surface topography) and host-related factors (e.g., species and implantation site). The degradation times can be

tailored from minutes to years by controlling the material variables such as molecular weight, surface topography, β-sheet

content, and porosity . Although in vivo research in animal studies showed complete silk degradation, a thorough

understanding of the degradation pathways and clearing mechanisms as well as degradation in humans is still lacking .

Late Host Response

After implantation of silk materials, a mild inflammatory response occurs that decreases within a few weeks. This host

response involves recruitment and activation of macrophages and the formation of FBGCs. The silk implant can be

degraded and replaced by host tissue (e.g., bone), but it can also be integrated within the tissue or encapsulated by

fibrous tissue. There is currently limited data regarding the short- and long-term host response in vivo. In the currently only

available study that prepared a silk-based osteosynthesis systems for fracture fixation in maxillofacial surgery, the in vivo

assessment of the 4- and 8-week host response by rats showed more favorable mechanical properties than
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biodegradable synthetic polymers and excellent biocompatibility accompanied with bone remodeling . These results are

promising but additional research is necessary to unravel the complete degradation pathways as well as the host

responses that this natural-derived polymer elicits.

1.5. Titanium and Its Alloys

Late Host Response

Titanium osteosynthesis systems are commonly made of pure titanium or titanium alloys . The most frequently used

titanium alloy for maxillofacial osteosynthesis systems consists of 90% titanium, 6% aluminum, and 4% vanadium

(Ti6Al4V, also called titanium alloy grade 5) . However, although titanium and its alloys are presumed to be

completely bioinert, there is growing evidence that wearing of particles occurs that can accumulate in surrounding tissues

and different organs of which the consequences are still largely unknown .

In a study that explanted titanium osteosynthesis plates from patients that underwent craniofacial surgery, titanium

particles (7.9 to 31.8 µg/gram of dry tissue) could be detected in the regional soft tissue and lymph nodes after 24-month

follow-up . Similarly, a recent study showed that the tissue surrounding titanium plates after fracture and osteotomy

fixation contained 1.03 and 1.09 ppm titanium particles, respectively . Meningaud et al. revealed a large variation in

titanium levels within the surrounding tissue (4–8000 µg/gram) after titanium fixation of osteotomies, but concluded that

almost all of these particles were produced at the moment of applying the osteosynthesis system . Other studies

reported on the presence of dark-grey pigmentation accompanied with fibrosis of the surrounding tissue and

macrophages containing intra-cellular titanium particles  . Zaffe et al. have also shown the presence of titanium in

the surrounding tissue as well as that erythrocytes and lymphocytes contained titanium particles . In addition, explanted

osteosynthesis plates analyzed with scanning electron microscopy showed defects and irregularities most likely due to in

vivo substance loss . Titanium debris has also been found throughout the body suggesting hematogenous

dissemination, with traceable amounts of titanium particles within the liver, spleen, and lymphatic system .

To determine the effect of such titanium particles, Coen et al. assessed the cytotoxicity of Ti6Al4V particles on human

fibroblast cells in vitro, and showed chromosomal instability, reproductive failure and decreased clonogenic survival 10

generations postexposure  . Studies that analyzed the periosteum surrounding titanium plates as well as blood samples

in patients after mandibular fracture fixation showed redox abnormalities, and increased oxidative stress and damage 

. Furthermore, an association between aluminum and the pathogenesis of Alzheimer’s disease has been suggested. In

addition, increased levels of circulating aluminum are associated with microcytic anemia and osteomalacia .

These findings indicated that there is a need for long-term epidemiological studies that assess the effect of these particles

in the long run.

Surface modifications (e.g., oxygen plasma immersion ion implantation) have been proposed to reduce metal ion release

from the implant (Table 2) . In addition, they are an important aspect of biocompatibility . Titanium, without

surface modifications, has a positively charged surface and will, therefore, tend to covalently bond to negatively charged

proteins such as fibronectin . Fibronectin promotes bacterial adhesion and, thus, increases the risk of infection .

Besides bonding to autologous proteins, most of the cell surface of bacterial species (e.g., Staphylococcus aureus, the

most common etiological pathogen of infections surrounding osteosyntheses ) is negatively charged, and thus also

adheres to positively charged surfaces such as titanium . By modifying the surface charge, adhesion of various

bacteria (e.g., Staphylococcus aureus and Escherichia coli) is inhibited and, ideally, the risk of infection is reduced .

These properties of titanium systems can also be tuned by other surface modifications (Table 2).

Table 2.  Different aspects of titanium osteosynthesis systems accompanied with the ideal properties and the potential

solutions to accomplish these properties.

Aspect Ideal Properties Methods Potential Solutions Refs

Surgical
handling

Easy perioperative adaptation of plates

3D
engineering

Patient specific osteosynthesis
systems

Production
process

Adaption of the production process
to alter the mechanical properties of

plates (e.g., lower stiffness)

No risk of perioperative screw breakage 3D
engineering

Adjusting the screw head to improve
the grip on the screws
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Aspect Ideal Properties Methods Potential Solutions Refs

Elastic
modulus

Enough elastic modulus to avoid
micromovements, but not stiffer than
bone to avoid stress-shielding of the

underlying bone

Production
process

Adaption of the production process
to alter the mechanical properties of

plates

Bacterial
infection

Preventing bacterial adhesion to implant
surface

Coating
Hydrophobic coatings

(Nano)gel coatings

Surface
modification

Plasma immersion ion implantation
(surface modification)

Physical vapor deposition

Increasing surface energy by acid
etching

Eliminating surrounding bacteria
without antibiotics

Coating Titanium Nitride (TiN) coating

Surface
modification

Adjusting the nano-scale surface
topography (e.g., pillars on the

surface)

Plasma immersion ion implantation

Physical vapor deposition

Laser surface modification

Anodization

Micro-Arc oxidation

Eliminating surrounding bacteria with
local antibiotics

Coating

Polymer coating containing
stabilized gas bubbles loaded with

antibiotics that can be released
locally using ultrasound

(Nano)gel coatings

Surface
modification Chemical vapor deposition

Osteogenesis Improving bone growth surrounding the
implant

Coating (Nano)gel coatings

Surface
modification

Plasma spraying with hydroxyapatite

Plasma immersion ion implantation

Physical vapor deposition

Chemical vapor deposition

Increasing surface energy by acid
etching

Laser surface modification

Anodization

Wear
resistance No wearing of titanium (alloy) particles

Coating Titanium Nitride (TiN) coating

Surface
modification

Plasma immersion ion implantation

Physical vapor deposition

Laser surface modification

Anodization
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2. Mechanical Properties

2.1. Minimally Required Mechanical Properties

Several studies assessed the mechanical forces surrounding osteosyntheses applied to maxillofacial fractures 

, osteotomies  and reconstructions , so that the minimally required mechanical properties of an

osteosynthesis system can be estimated. After maxillofacial trauma, the reported bite force increases up to 64 N by the

second postoperative fracture fixation day, 92 N after 1 week, 187 N after 4 weeks, and up to 373 N at the 3-month follow-

up . Other studies focusing on trauma patients showed that 100 N forces were measured after 4 weeks of fixation 

. The mechanical forces around maxillofacial osteotomies have been reported to increase from 21 ± 14 N (i.e., after 1

week) to 65 ± 43 N (i.e., after 6 weeks)  while other studies reported forces ranging from 82.5 to 132 N . The

masticatory forces after mandibular reconstructions ranged from 28 to 186 N . However, the mechanical stress

surrounding osteosynthesis systems is multi-factorial and is affected by the location of the fracture , differences in

interfragmentary stability , mandibular height , degree and direction of movement , and preoperative

masticatory forces . Load-sharing osteosynthesis allows sharing of the load between bone segments and the

osteosynthesis system (e.g., fractures with interfragmentary stability) whereas in load-bearing osteosynthesis, the

complete load at the fracture site is carried by the osteosynthesis system without interfragmentary stability . In a

load-bearing situation, the osteosynthesis system is exposed to substantially higher loads and, thus, the biomechanical

requirements for an optimal osteosynthesis system are higher compared to load-sharing osteosyntheses . Although

it would be of high clinical value to determine the exact cut-off value of the transition from load-sharing to load-bearing

osteosyntheses, this is currently unknown. Since the mandible is exposed to considerably higher biomechanical forces

compared to the maxilla , load-bearing osteosynthesis of the mandible requires even higher mechanical properties of

the used osteosynthesis system compared to load-bearing osteosynthesis of the maxilla or load-sharing osteosynthesis of

the mandible . Furthermore, as bone healing progresses, the forces will be shared by the osteosynthesis system

and the underlying healing bone. Thus, it remains difficult to estimate the least mechanical properties an osteosynthesis

system has to meet. Therefore, researchers have mainly focused on relative differences between the available

osteosynthesis systems .

2.2. Mechanical Properties of Osteosynthesis Systems

The mechanical properties of osteosynthesis systems depend on several factors including composition (i.e., titanium

(alloys) or (co-)polymers), the production processes (e.g., stamping versus laser cutting of titanium systems) ,

dimensions, polymer self-reinforcement , the application method (i.e., screws or ultrasound welded pins) , ageing,

and sterilization methods . The tensile, bending and torsional stiffness of an osteosynthesis system are a more

clinically relevant outcome than maximum tensile load since this affects adequate fixation and bone healing (i.e., malunion

and non-union)  while maximum tensile load is only relevant whenever the bone segments are already separated by

more than a few millimeters. In the latter case, this will certainly result in compromised bone healing or malunion.

In a recent in vitro study, the maximum tensile load as well as the tensile, bending and torsional stiffness of 13

biodegradable and 6 titanium straight, four-hole osteosynthesis systems derived from static mechanical tests of the initial

materials were assessed and compared  . The titanium systems’ tensile loads were higher than those of the

biodegradable systems. The bending stiffness of the 1.5 mm titanium systems was comparable to all the biodegradable

systems whereas the 2.0 mm system’s bending stiffness was higher. Regarding the biodegradable systems, Inion CPS

2.5 mm had the highest tensile load and torsional stiffness, SonicWeld 2.1 mm the highest tensile stiffness, and

BioSorbFX 2.0 mm the highest bending stiffness. Regarding the titanium systems, the CrossDrive (2006) systems had the

highest tensile, bending and torsional stiffness. It must be noted, though, that although high mechanical osteosynthesis

properties are sought for adequate fixation, the extreme stiffness of the titanium systems can be a disadvantage due to

the stress shielding of the underlying bone . Stress shielding occurs when the underlying bone is exposed to less

stress than it should endure, leading to an increase in osteoclast activity and bone resorption, that can, in turn, lead to

decreased bone density and aseptic loosening . This has led to the development of new titanium osteosynthesis

systems with a lower elastic modulus to reduce stress shielding of the underlying bone by adjusting the production

process (Table 2) .

Within the limitations of finite element analyses (e.g., assuming the masticatory forces are fixed), three-dimensional

analyses indicated that the biomechanical stresses surrounding osteosynthesis systems remain far below the threshold of

their ultimate strength of both biodegradable and titanium osteosynthesis systems . In addition, the

empirical evidence of fracture  and osteotomy  osteosyntheses shows that the efficacy of titanium and

biodegradable osteosyntheses is similar (e.g., absence of malunion), indicating that the less favorable mechanical
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properties of biodegradable osteosynthesis are still sufficient to achieve similar healing outcomes. However, as also

observed from the empirical evidence, the mechanical properties of biodegradable osteosyntheses of mandibular

osteotomies may be insufficient to avoid micromovements . Future research should also focus on these

micromovements since they play an important role in developing foreign body reactions .

Finite element analyses also demonstrated that the stress surrounding conventional screws is much larger compared to

those of plates, indicating that material complications may arise from the screws rather than the plates (e.g., screw

loosening or fractures) . The positive effect of ultrasound welding of biodegradable, thermoplastic pins instead of using

conventional screws was demonstrated by the superior mechanical properties of the SonicWeld Rx (PDLLA with

thermoplastic pins) compared to the Resorb X system (identical system with screws) . Additionally, ultrasound welding

caused a shift of the weakest link of the complete osteosynthesis system from the screw-plate interface to the plate itself.

Therefore, ultrasound welding may reduce screw-related material complications, but this has to be investigated by future

research.
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