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1. Introduction

Unhealthy brain aging and cognitive decline associate with a sedentary lifestyle and, at a cellular level, this is

accompanied by astrocyte hypertrophy, myelin dysregulation, neurovascular dysfunction  and the impairment of

neurogenesis . Highly sedentary humans (≥8 h/day) display reduced hippocampal volumes and increased white matter

(WM) hyperintensities  that are associated with accelerated cognitive, neuropsychiatric and functional decline . In

addition to the changes associated with a sedentary life, it has become clear that oral dysfunction is present in the same

individuals and that this group feature is also associated with dementia or mild cognitive decline . While

it is not clear whether poor oral health predicts dementia, substantial data suggests that oral health declines as cognitive

impairment and dementia progresses . Furthermore, it has been demonstrated that masticatory exercise

improves cognitive function in older adults  and thus the link between cognitive decline and masticatory dysfunction is

now clear . As loss of masticatory activity  and sedentary life style  are risk

factors for age-related cognitive decline, there is a need to focus attention on those sub-populations that experience

greater oral health deterioration or impairment of the stomatognathic system, and those having living sedentary lives.

Several experimental models of masticatory dysfunction have been explored to clarify the cellular and molecular

mechanisms associated with memory impairment . From these studies, it can be learned that chewing maintains

hippocampus-dependent cognitive function , and that age-related spatial memory deficits can be aggravated by a

sedentary lifestyle and a reduction in masticatory activity . In agreement with the findings described above,

oral rehabilitation and environmental enrichment act in concert to restore spatial memory decline in aged mice . In rat

models of occlusal disharmony, amyloid-β is increased in the hippocampus and this was also associated with cognitive

dysfunction . Studies in similar mouse models of occlusal disharmony report significant increases in the expression

of interleukin-1β in the brain, which was later accompanied by the appearance of amyloid-β and hyperphosphorylated tau

in the hippocampus, and the induction of learning and memory deficits .

At the cellular level, cognitive decline has been linked to neuroinflammation via the enhanced activation of astrocytes,

oligodendrocytes, and microglia  and these events are underscored by the presence of specific molecular

signatures in the aging brain .

As a function of environmental stimuli , age , or the presence of other pathology , astrocytes

differentially respond to changes in the microenvironment of the brain, in both form and function . For example,

physical exercise induces astrocyte proliferation and morphological changes, which alters the interplay between

astrocytes, microglia and neurons to enhance neuroplasticity . A distinctive pattern of gene expression is also

induced in regions of the brain that are activated by exercise . An enriched environment also induces neuroplastic

changes in the dorsoventral hippocampal regions , increasing BDNF levels, p-AKT and p-MAPK1/2 and preventing

neuroplastic decline by increasing the formation of dendritic spines and new neurons .

In rodent models of dysfunctional mastication, induced either by tooth loss, raised bite or soft diet, cognitive decline is

associated with differential effects on astrocytes in different areas and different layers within the same greater brain region

. Indeed, five transcriptionally distinct astrocyte subtypes have been found in the mouse hippocampus .
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In aged brains, previous transcriptomic analysis has revealed that there is upregulation of reactive astrocyte genes ,

which includes the expression of genes for neuroinflammation, synapse elimination pathways, and decreased cholesterol

synthesis enzymes . These changes were accompanied by an increase of A1 reactive astrocytes, which are argued to

release a neurotoxic factor that induces neuronal death and cognitive decline . In addition, dysregulated astrocytes and

astrogliosis with an increased expression of GFAP and cellular hypertrophy  have been shown to be associated with

impaired memory function in late life .

From optogenetics and chemogenetics studies, in which astrocytes can be selectively manipulated, emergent data has

provided evidence that astrocytes directly participate in cognition , and other behavioral functions, including

sensorimotor behaviours , sleep , feeding , fear and anxiety , and this is associated with regulation of

synapses and circuits (see  for recent reviews).

2. Running, Experiencing Novelty, and Mastication to Learn Faster, Better
Remember, and Enhance Individual Ethological Behavior

It is well known that long-term voluntary running improves learning and memory, by enchancing the strength of neuronal

connections, through synaptic plasticity in the hippocampus , and increasing neurogenesis . Continuous

voluntary wheel running exercise also contributes to astrogenesis and the repopulation of microglia . The voluntary

running-enhanced plasticity seems to be mediated by the Notch1 signaling pathway  and brain-specific angiogenesis

inhibitor 1 (BAI1) . In the absence of exercise, short-term  and lifelong environmental enrichment are able to improve

memory and postpone age-related cognitive decline ; but for rodents enriched cages usually combine elements for

physical exercise and cognitive stimuli. Indeed, running wheel, toys, tunnels, bridges, ropes, stairs, which are replaced or

displaced from time to time (1 or 2 weeks) , encourage locomotor and exploratory activity in these cages, whereas

the absence of these elements in standard laboratory cages do not.

The elements inside enriched cages provide novelty, visuo-spatial and somatomotor stimuli and social interaction, but the

stimuli for neurogenesis and the release of neurotrophins originate from voluntary exercise . Comparative effects of the

elements provided by an enriched environment have enabled the disentanglement of the influence of novelty, social and

physical activity and behavioral performance in hippocampal-dependent tasks. Indeed, well designed comparative studies

demonstrated that running stimulates hippocampal neurogenesis, while a complex environment does not. A complex

environment, and not running, increases depolarization-associated c-fos expression and reduces plasma corticosterone

. However, the combination of cognitive stimuli, social interaction, and physical exercise was found to be the most

effective way to reduce neuropathological outcomes in a transgenic mouse model of cerebral amyloid angiopathy .

Innate behavioral and physiological programs ensure survival and must be flexible enough to cope with environmental

changes and build adaptive responses . The impoverished environment of standard laboratory housing is associated

with reduced display of species typical behaviors, whereas enriched cages seem to enhance ethological natural behaviors

and increase individualized behavior in mice . Hiding behavior is a good example of the innate repertoire to avoid

attack and predation and this is a species-specific response that may explain the tendency of a mouse to avoid open/lit

areas and to spontaneously explore unfamiliar areas . In an open arena, for example, this mouse behavior is readily

recognized as a preference for the safety of the peripheral zone of the open field . Another innate typical behavior is

related to the detection and exploration of novelty. In general terms, novelty is defined as a new event with which partial or

no previous experience has occurred , being classified respectively as contextual/spatial novelty or stimulus novelty

. Enriched cages provide periodic inanimate object novelty and complexity through alterations in the physical and social

environment, and these elements enhance sensory, cognitive and physical stimulation . Similarly, an enriched

environment enhances spatial learning, reversal learning and memory through the balance of excitatory and inhibitory

synaptic densities . The exploration of novelty related to a social stimulus or object recognition in rodents is known to

activate different neural circuits , which appear to be an evolutionary adaptive response to provide parallel processing

for novelty.

Oral and cognitive health are interconnected  and the recovery of masticatory activity can prevent cognitive decline

. The use of dental human prostheses successfully reduces cognitive consequences of masticatory

dysfunction . In animal studies, the relation between decrease in masticatory activity, due to a soft diet  or

tooth loss , and memory impairment have been previously demonstrated . Similarly, occlusal disharmony induces

spatial memory impairment  and chronic stress . Coherently, mastication activity, as a stress-

coping behavior , is associated with activation of the hypothalamic-pituitary-adrenal (HPA) axis and hippocampus .
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Mice housed in standard cages have reduced physical fitness and impaired thermoregulation, which leads to decreased

ethological behavior and welfare . In addition, long-term powdered diet increases the spontaneous locomotor activity

of mice and their social interaction or impulsive and anxiety-like behaviors in elevated-plus-maze tasks . These

changes are associated with significant modifications in dopaminergic/noradrenergic systems and γ-aminobutyric acid-

ergic (GABAergic) mediations in the frontal cortex . In contrast, chewing prevents stress-induced hippocampal long-

term depression (LTD) formation and anxiety-related behaviors, while ameliorating stress-induced suppression of

hippocampal long-term potentiation (LTP)  via histamine H1 receptor . Indeed, gene expression after weaning

varies as a function of soft (reduced masticatory activity) or chow (normal masticatory activity) diets. Here, gene ontology

analysis of differential expression in the thalamus showed that glutamate decarboxylase, GABA receptors and the

vesicular GABA transporter were upregulated in the chow diet group, whereas dendritic spine morphogenesis was

downregulated, with a significant reduction in the number of spines at the ventral posterolateral and posteromedial

nucleus .

The hypothalamic paraventricular nucleus (PVN), a high order integration center between the neuroendocrine and

autonomic nervous systems, is affected by chewing, which reduces the number of corticotropin releasing factor positive

cells inhibiting the autonomic releasing of adrenaline and noradrenaline via locus coeruleus .

3. Enriched Environment and Masticatory Rehabilitation to Prevent
Synaptic Dysfunction Associated with Age-Related Cognitive Decline

In animal models all the approaches that have been used to induce masticatory dysfunction (soft diet feeding, molar

extraction and bite raising) are associated with impairment of spatial learning and memory, a reduction of the number of

hippocampal pyramidal neurons, the downregulation of brain derived neurotrophic factor, decreased synaptic activity,

impaired neurogenesis in dentate gyrus and increased glial cell proliferation, which seem to be dose-dependent through

the reduction of chewing-related stimuli (see  for systematic reviews).

The synaptic changes in form, function, and plasticity associated with learning and memory formation are interrelated in

the hippocampus . As the hippocampal circuits mature, the establishment of synaptic reinforcement occurs in

association with lasting structural changes and long-term potentiation (LTP). The intense synaptogenesis in the

developmental period is replaced by an increase and clustering of mature synapses  and these synaptic

rearrangements are selective and strengthen the circuits related to the task being learned .

Functional magnetic resonance imaging studies have shown that when a comparison of the activity in the hippocampal

subfields is made, the dentate gyrus (DG) is more active than the horn of Amon (CA1-CA2-CA3) and the subiculum, and

that in both the coding process and information retrieval, the rostral (septal) pole is more active than the caudal (temporal)

pole . In fact, adult rats trained to remember the spatial location of an object, exhibited remodeling of synapses 6 h

later in the molecular layer of the dorsal DG (septal) (DG-Mol) .

The entorhinal-to-dentate gyrus pathway is involved in memory formation carrying spatial and non-spatial information

through the medial and lateral perforant excitatory pathways onto granule cells . Astrocytes sense local synaptic

transmission in the molecular layer of the dentate gyrus and control these inputs to the dentate granule cells at the

presynaptic level .

Evidence has now emerged in rodents that the astrocyte is an essential mediator of learning and memory  and that

astrocytic ephrin-B1 controls synapse formation in the hippocampus during learning and memory by regulating new

dendritic spine formation and clustering on hippocampal neurons activated during memory recall . Astrocytic

processes encapsulate synapses allowing bidirectional communication with neurons  through G-protein-coupled

receptors influencing learning and memory . The activation of hippocampal astrocytes enhances synaptic potentiation

and memory acquisition .

4. Dentate Gyrus Astrocytes, Long Life Sedentary Lifestyle and
Dysfunctional Mastication

It is known that physical exercise promotes morphological changes in astrocytes, and astrocytes may contribute to

episodic memory function . Astrocytic activation is necessary for synaptic plasticity and is sufficient to induce

NMDA-dependent long-term potentiation in the hippocampus in a task-specific way, coupled with learning .

In general, astrocyte arbors with the greater complexity phenotype (AST1) from an enriched environment, independent of

masticatory regimen or age, showed thinner and more ramified branches than astrocytes from mice raised in an
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impoverished environment. This effect, however, is not readily recognized in astrocytes with the lower complexity

phenotype (AST2). Thus, AST1 and AST2 morphological complexities are diversely affected by environment, aging and

masticatory dysfunction, suggesting that astrocyte morphology does not respond linearly to these influences and that

these morphotypes may have differential physiological roles.

Astro-glial morphological atrophy and loss of function seem to be part of neuropathological changes of the aging brain

, and astrosenescence is characterized by loss of function and neuroinflammation, which seem to be central

components to the mechanisms of age-related neurodegenerative disorders . Astrocyte senescence is associated with

an increased expression of glial fibrillary acid protein and vimentin , and aged astrocytes are associated with the

releasing of chemokines, cytokines, and proteases . Morphological  and metabolic astrocyte changes  also

emerge as aging progresses and these changes can be aggravated by a sedentary lifestyle and masticatory dysregulation

.

It has been suggested that astrocytes exhibit two main phenotypes associated with a proliferative profile surrounding

areas of damaged tissues and a non-proliferative, but reactive, profile retaining basic structural organization and cell

interactions in intact tissues . All reconstructed astrocytes previously described  retained basic structural

organization in intact tissue, suggesting that AST1 and AST2 phenotypes are indeed subtypes of a non-proliferative,

reactive profile.

5. Differential Effects of Sedentary Lifestyle and Masticatory Dysfunction
on Dorsal/Ventral Dentate Gyrus Morphological Phenotypes

Although dorsal and ventral hippocampal regions show similar laminar and cellular organization, their connectivity to other

brain regions are different . They exhibit differential rates of neurogenesis and each displays a distinct

pattern of neurotransmitter receptor distribution . In addition, the septal/temporal divisions of the hippocampus

exhibit significant differences in behavior-induced arc gene expression , distinct transcriptional and epigenetic effects

in response to an enriched environment or physical activity , and distinct pathological responses throughout aging

. The dorsal hippocampus is associated with spatial memory and contextual information processing, while the ventral

hippocampus is related to emotional behavior in association with fear, anxiety, and reward processing . For

example, small lesions in either the dorsal or ventral hippocampus generate distinct behavioral impairments in working

memory and reference memory retrieval  and normal or abnormal neurogenesis along the septal/temporal

hippocampal regions, which may be connected to mental health, neurological diseases  or affective disorders .

A previous report, limited to search for age influence on morphological complexity of GFAP astrocytes, demonstrated

remarkable heterogeneity in the age-related changes in distinct subfields and along the dorsoventral axis of the

hippocampus and in the entorhinal cortex of C57Bl6 mice . These authors found that compared to 6-month-old mice

the number of intersections, as a function of soma distance, increased significantly in dorsal dentate gyrus of 14-month-

old mice, and the total sum of intersections, the number of processes and the total branch length followed a similar

tendency, but no changes were observed in the ventral dentate gyrus.

Recently , cyclic multiplex fluorescent immunohistochemistry was used to classify astrocytes morphologically in

normal aging and Alzheimer’s Disease, and showed three main phenotypes of astrocytes: homeostatic, intermediate, and

reactive. Reactive astrocytes and, to a lesser extent, intermediate astrocytes were associated with Alzheimer’s disease

pathology. The intermediate astrocytes were suggested to represent a transitional state between reactive and homeostatic

or to represent a resilience mechanism. These authors concluded that the classic binary “homeostatic vs. reactive”

classification for astrocytes, but also relevant to microglia, may now include a third state that may represent gain or loss of

function. Nevertheless, recent literature points out that astrocytes are heterogeneous and dynamic phenotypes with

timing- and context-dependent states .
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