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Bile acids (BA) are amphipathic steroid acids synthesized from cholesterol in the liver. They act as detergents to expedite

the digestion and absorption of dietary lipids and lipophilic vitamins. BA are also considered to be signaling molecules,

being ligands of nuclear and cell-surface receptors, including farnesoid X receptor and Takeda G-protein receptor 5.

Moreover, BA also activate ion channels, including the bile acid-sensitive ion channel and epithelial Na+ channel. BA

regulate glucose and lipid metabolism by activating these receptors in peripheral tissues, such as the liver and brown and

white adipose tissue. Recently, 20 different BA have been identified in the central nervous system. Furthermore, BA affect

the function of neurotransmitter receptors, such as the muscarinic acetylcholine receptor and γ-aminobutyric acid

receptor. BA are also known to be protective against neurodegeneration. 
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1. Introduction

Bile acids (BA) are synthesized from cholesterol in the liver and are a significant component of bile. They are stored in the

gallbladder and released into the small intestine after a meal. BA are amphipathic steroid acids and are known as

indispensable detergents, expediting the digestion and absorption of dietary lipids and lipophilic vitamins by forming

micelles in the small intestine. Recently, they have also been considered to be signaling molecules. They are now

recognized as ligands of farnesoid X receptor (FXR), a nuclear hormone receptor, and Takeda G-protein receptor 5

(TGR5), a G-protein-coupled receptor (GPCR) that is also known as G protein-coupled bile acid receptor 1 (GPBAR1) .

Bile salt composition of a variety of vertebrate species is validated. Bile salts include C  bile alcohols, C  bile acids, and

C  bile acids. C  bile acids exist in all vertebrates, although C  bile alcohols and C  bile acids exist in fish, amphibians,

reptiles, and birds . 5α-C  bile alcohol sulfates are considered as the first ancestral bile salts. 5α-cyprinol sulfate is 5α-

C  bile alcohol sulfate and activates FXR from the frog and the zebrafish, but not from the human and the mouse. In

contrast, taurochenodeoxycholic acid (TCDCA) and lithocholic acid (LCA) activate FXR from the human and the mouse,

but not from the frog and the zebrafish. Thus, the structure of FXR may be changed to adapt to bind species-specific bile

salts .

2. Neurological Functions of BA

Twenty different BA and their receptors have been identified in the brain, implying that BA have physiological and

pathophysiological roles in this tissue (Figure 2), and indeed, many studies of their physiological roles in the brain have

been reported.

Figure 2. Protective functions of bile acids (BA) against neurodegeneration. BA are known to prevent the accumulation of

amyloid β peptides in Alzheimer’s disease; protect against mitochondrial damage in Parkinson’s disease; protect against

apoptosis, mitochondrial damage, and ubiquitin accumulation in Huntington’s disease; and protect against apoptosis in

amyotrophic lateral sclerosis.
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2.1. The Role of BA in the Brain

BA affect the functioning of the receptors for several neurotransmitters, including M  and M  muscarinic acetylcholine

receptors, γ-aminobutyric acid (GABA) type A (GABA ) receptors, and N-methyl-D-aspartate (NMDA) receptors. TCA,

GDCA, and TDCA activate the M  receptor, while DCA activates the M  receptor. M  receptors are distributed throughout

the brain and are crucial for cognitive function. However, M  receptors are localized to neurons, which project to regions

such as the hippocampus and substantia nigra, although they are also expressed at low levels throughout the brain. Thus,

BA may affect cognitive function, memory, and learning . NMDA receptors are ionotropic glutamate receptors that are

activated by the simultaneous binding of both glutamate and D-serine or glycine . Their activation causes Ca  influx,

which can induce long-term potentiation and long-term depression. Therefore, appropriate NMDA receptor activation is

important for learning and memory . In contrast, the GABA  receptor is an ionotropic GABA receptor that is a ligand-

gated chloride ion channel. The activation of GABA  receptor causes an influx of chloride ions, leading to the

hyperpolarization of neurons and the inhibition of neurotransmission . CDCA, DCA, and CA block both GABA  and

NMDA receptors . Histaminergic neurons in the tuberomammillary nucleus (TMN) of the hypothalamus play an important

role in arousal and wakefulness  and express GABA  receptors; thus, the suppression of histaminergic neuronal

activation in the TMN by GABA induces sleep . Conversely, UDCA increases arousal by blocking GABA  receptors on

TMN neurons . Moreover, a recent study has demonstrated that TUDCA can induce neurogenesis in adult rats .

Adult neurogenesis is the process of generating new functional neurons that are added to the adult brain and occurs in

two specific regions: The subgranular zone (SGZ) of the dentate gyrus (DG) in the hippocampus and the subventricular

zone (SVZ), located in the walls of the lateral ventricles. Neural stem cells (NSCs) in the SGZ of adult mammals generate

neurons in the DG. NSCs in adult human SVZ may produce functional neurons in the striatum by migrating there. In

contrast, NSCs in adult rodent SVZ may produce functional neurons in the olfactory bulb . In the rat, TUDCA increases

the proliferation and neural differentiation of NSCs in the SVZ, but not in the DG .

2.2. The Role of BA in Neurodegenerative Diseases

Alzheimer’s disease is characterized by memory loss, dementia, and morphological changes in the brain and is a

common progressive neurodegenerative disease. The main pathological feature of the brains of patients with Alzheimer’s

disease is the accumulation of amyloid β peptides and tangles of tau protein . The processing of amyloid precursor

protein (APP) by β and γ secretases generates amyloid β peptide  and the γ secretase complex includes presenilin

1 (PS1), which is associated with the maturation of V-ATPase, responsible for the acidification of lysosomes. PS1

dysfunction, thus, leads to an impairment in lysosomal acidification and function . The accumulation of amyloid β

peptides is relevant to the dysfunction of both APP and γ secretase, and APP/PS1 double knockout mice, which express

both mutated human APP and PS1, are used as a model of Alzheimer’s disease. Interestingly, TUDCA reduces the

accumulation of amyloid β peptides in the hippocampus and frontal cortex and rescues memory deficits in APP/PS1

double knockout mice . In humans, plasma CA concentrations in patients with Alzheimer’s disease are significantly

lower than those in control subjects, and the TCA concentration in the brain of patients with Alzheimer’s disease is also

significantly lower . In contrast, the plasma concentration of LCA, a secondary BA, is significantly higher in patients with

Alzheimer’s disease than in controls . Furthermore, it has been shown that the ratio of DCA (secondary BA) to CA

(primary BA) in serum is significantly higher in Alzheimer’s patients . These studies indicate the relationship between

BA and Alzheimer’s disease, and the importance of the brain-gut-microbiome axis. However, morphological and functional

abnormalities in mitochondria have also been identified in patients with Alzheimer’s disease . In fibroblasts from

Alzheimer’s disease patients, the mitochondrial membrane potential (MMP) is lower, and there is mitochondrial

elongation. Dynamin-related protein 1 (DRP1) plays an important role in mitochondrial fission and is essential for

mitochondrial quality control . Although the expression of DRP1 is lower in fibroblasts from Alzheimer’s disease

patients, UDCA increases its expression .

Parkinson’s disease is another common progressive neurodegenerative disease that is characterized by tremors, muscle

stiffness, loss or impairment of voluntary movements, slowness of movement, and postural instability . Mutations in

phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and parkin are found in early-onset Parkinson’s

disease and are important in the progression of Parkinsonism . PINK1 and parkin initiate mitophagy and

nuclear dot protein 52 kDa (NDP52), and optineurin are essential for this process . 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) and rotenone treatment have been widely used in the creation of a model of Parkinson’s

disease. Both toxins inhibit complex I in mitochondria, leading to neuronal mitochondrial damage and Parkinsonism .

However, TUDCA protects neurons from MPTP-induced oxidative stress and neurotoxicity in the midbrain and striatum of

mice . TUDCA induces nuclear factor erythroid 2-related factor 2 (Nrf2) expression and reduces the generation of

reactive oxygen species, and indeed, this anti-oxidant effect of TUDCA may be Nrf2-dependent . Moreover, TUDCA

ameliorates clinical signs induced by MPTP, such as the increase in swimming latency, foot-dragging, and tremors. In
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addition, TUDCA inhibits the loss of dopaminergic neurons and reduces the loss of MMP and mitochondrial mass elicited

by MPTP . Furthermore, TUDCA increases the expression of PINK1, parkin, and the ratio of LC3-II/lC3-I, implying that

TUDCA induces mitophagy . In addition, in the rotenone-induced rat model of Parkinson’s disease, UDCA ameliorates

abnormalities in the mitochondria of striatal neurons, such as irregular swelling and loss of cristae .

Huntington’s disease is an autosomal dominant inherited neurodegenerative disease caused by a CAG trinucleotide

expansion encoding polyglutamine (polyQ) at the N-terminus of Huntingtin (HTT). Huntington’s disease is characterized

by motor dysfunction, cognitive decline, and psychiatric disturbances . Chemical and genetic models of Huntington’s

disease have been studied . Firstly, 3-nitropropionic acid (3-NP) is an inhibitor of succinate dehydrogenase (complex

II) in mitochondria and induces degeneration of the caudate-putamen, which is also present in Huntington’s disease . 3-

NP treatment is associated with swelling of striatal mitochondria, abnormal mitochondrial membrane structure, and

apoptosis. However, TUDCA prevents mitochondrial damage and apoptosis and ameliorates the sensorimotor deficits

induced by 3-NP . Secondly, R6/2 transgenic mice possess a genomic fragment containing exon 1 of the

human Huntingtin gene, which carries 144 CAG repeats, and are the most widely used model of Huntington’s disease 

. In these mice, TUDCA prevents the striatal apoptosis and cerebral and striatal atrophy . The accumulation of HTT

and ubiquitin are also symptoms of Huntington’s disease, and ubiquitin is recruited to polyglutamine-expanded HTT

fragments . TUDCA reduces the accumulation of ubiquitin in the striatum of R6/2 transgenic mice and ameliorates their

sensorimotor deficits .

Amyotrophic lateral sclerosis (ALS) is a progressive and ultimately fatal disease that is characterized by the degeneration

of both upper and lower motor neurons, leading to muscle weakness, atrophy, and paralysis . Impairments in

superoxide dismutase 1 (SOD1), C9ORF72, TAR DNA-binding protein of 43 kDa (TDP-43), and fused in sarcoma (FUS)

are molecular features of this disease . Transgenic mice that carry the glycine 93 to alanine mutation of human SOD1

(hSOD1 ) are the most studied model of ALS . NSC-34 cells carrying hSOD1  also represent a useful model of

ALS-affected motor neurons . Glycoursodeoxycholic acid (GUDCA) prevents the apoptosis of NSC-34 cells carrying

hSOD1  , and clinical trials of the use of TUDCA in patients with ALS have shown an improvement in muscle

function and survival time, without adverse effects .
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