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1. Introduction

Structural health monitoring (SHM) is a field of science that focuses its efforts on evaluating and monitoring the integrity of

a structure of interest . Structural health monitoring systems are based on the design of sensing systems and structural

models to evaluate machines and structures.

Although SHM systems are not a new field of research, computational advances in sensing hardware and the

computational power of embedded devices drive the generation of reliable data for developing models based on

classification and prediction data, including machine-learning algorithms in SHM systems. Moreover, sensors, such as

accelerometers, are inexpensive compared to other sensors and can be effectively deployed in a sensing system to

implement vibration-based SHM systems . Accelerometers, or when combining them with other sensors, are the

dominant sensing approaches for these SHM applications . Because vibration-based systems date back to the late

1970s , technological advances represent a field of opportunities to improve existing solutions in the field of damage

identification.

2. Damage Classification in SHM

SHM covers several application areas and the assets monitored range from small components to huge civil structures and

complex machines. Building SHM systems focus on measuring changes in the physical parameters to assess the current

state of the structure and, in some cases, predict the building’s response to future seismic excitations. To make these

predictions, it is necessary to identify the natural frequencies of the buildings . In the case of buildings, the structure is

subjected to the effects of static and dynamic loads, so the complexity of the analysis presents a challenge in giving an

accurate model that includes all these known and unknown effects.

SHM systems are composed of several hardware and software elements. An overview of the main components of SHM

systems as defined by Farrar and Worden  are:

Operational assessment: The aspect related to damage conceptualization and operational conditions.

Data acquisition: The sensor system design and data preprocessing.

Feature extraction: The selection of sensitive damage features according to the damage identification capabilities of the

desired SHM system.

Statistical model development: The design and implementation of the physics-based or data-based model.

Yuan et al.  explored the data acquisition aspect (1) of recent proposals for SHM systems, showing several features of

accelerometer sensing systems that are attractive for the structural monitoring and evaluation of SHM systems. This

research focuses on areas three and four of SHM systems, analyzing proposals of the physics-based models and the

data-based models presented in the literature that belong to these areas. Figure 1 shows these areas in SHM systems,

and the methods, techniques and algorithms involved.
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Figure 1. Diagram of structural health monitoring systems areas.

The core of SHM systems is their ability to perform damage identification. Damage is the change in the material’s physical

properties due to progressive deterioration or as a result of a single event on a structure. This change can detract from the

behavior or integrity of a structure. Damage characterization can be conceived in several ways depending on the

objectives of the SHM system, and damage states can be defined in terms of extent, severity, remaining operational time,

thresholds, and damage index standards. Rytter  also presents a damage identification classification in SHM systems,

as shown in Table 1.

Table 1. Damage characterization levels.

Damage Characterization
Level Description

I: Detection The SHM system can decide if there is any damage to the structure of interest.

II: Localization The SHM system can determine the existence and location of damage in the structure of
interest.

III: Assessment The SHM system can estimate the extent of damage in the structure of interest.

IV: Prediction The SHM system can estimate the remaining lifetime of the structure.

3. SHM System Models

3.1. Physics-Based SHM Systems

In the case of physical asset monitoring, there are two main branches of modeling: physics-based modeling, also known

as physical-law modeling, and data-driven modeling. Physics-based modeling aims to describe phenomena by

formulating mathematical models that integrate interdisciplinary knowledge to generate models that replicate observed

behavior. Models are commonly presented in differential equations whose complexity increases as more factors become

involved. Several terms and parameters must be defined to fully describe the system phenomena. Initial and boundary

conditions must be identified to obtain physics equation solutions, and the computational cost associated with this

operation can be very time-consuming for complex phenomena.

In SHM systems, these models are implemented to assess the condition of an asset under operating conditions to monitor

changes that may indicate the presence of damage and shorten the remaining useful life of the asset. Finite element

modeling (FEM) software implements well-known analyses, such as modal analysis, and allows the simulation of different

structures and initial and boundary conditions straightforwardly. FEM software includes physical law models integrated

into software libraries to perform damage analysis on a virtualized model of structures efficiently.

The complexity of modeling building structures under seismic excitation is caused by the intervening factors that can

modify the behavior of these structures and by the difficulty of correctly defining their physical properties. Several works

focus on estimating model parameters and uncertainties to improve the model of the structure. For example, Xu et al. 

estimated the parameters of the structures based on linear and nonlinear regression analyses. These structures’ linear

and nonlinear parameters, such as elastic stiffness and yield displacement, are obtained for a three-story structure.

Gomes et al.  addressed an inverse identification problem using numerical models and a genetic algorithm.
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Model parameters obtained from experimental and recorded data can increase the model’s accuracy compared to the

actual measured results. However, environmental and operating conditions do not remain constant throughout the life of

the structure. In addition, physical law models have drawbacks that limit their applications in some SHM systems. The

time to solve the equations in a real-time SHM system impacts the response time to ensure safety and the reduction of

economic losses in response systems for seismic protocols and evacuation procedures. In order to reduce the time costs

of performing calculations, optimization algorithms applied to the problem of SHM are encouraged and proposed in the

literature .

Table 2 lists physics-based proposals for SHM systems in buildings under vibration excitation for multi-story structures. In

this table, two types of proposal contributions are shown: the identification of system parameters and damage. According

to Farrar’s classification, the level of damage identification for the practical proposals is also presented.

Table 2. N-story building structure health monitoring systems based on physical model techniques.

Publication Structure Damage
Indicator

Algorithm or Analysis
Method

Damage Identification
and Level Year

An eight-story physical
building model in FEM

software

Stiffness
reduction

Vibration-based damage
methods

Damage detection
and localization II 2018

A 14-story physical
building prototype under

vibration table

Modal
frequencies

Operational modal
analysis

Modal
identification N/A 2017

A five-story physical
building prototype under

vibration table

Stiffness
reduction

Novel damage
localization algorithm

based on wave
propagation

Damage detection
and localization II 2020

A 51-story building with
accelerometers and

tilt sensors

Modal
frequencies

Modal parameters
estimation through
Bayesian algorithm
combined with FFT

Modal
identification N/A 2019

A 12-story frame
structure

Stiffness
reduction

Hysteresis loop analysis
method Damage detection I 2017

An 86-story physical
building in FEM

software

Modal
frequencies

Wave-based damage
detection based on

propagation analysis

Modal
identification N/A 2018

A three-story frame
structure

Inter-story
displacement

Two novel damage
indices based on the
displacement of the

structure

Damage detection
and localization II 2015

3.2. Data-Based SHM Systems

Machine-learning techniques are a subset of the field of artificial intelligence. Due to their statistical nature, their vision is

to address problems of interest in pattern recognition identification and classification tasks. SHM from the ML point of view

is a classification problem in which at least two states are compared in SHM systems employing ML techniques: damaged

and undamaged states.

A machine-learning model extracts information in the form of features from a given data set and classifies those data

features. These data-driven models require large amounts of information to train the model and avoid the overfitting

problem. The generalization problem depends on the amount of available data and significant diversity of this training data

to avoid overfitting and ensure a reasonable level of generalization. In an idealized situation, the data set should include

the samples of the possible range of excitation that can be applied to the structure. In addition, data quality improvement

using signal processing techniques, such as normalization and noise filtering, is desirable for the generation of the data

set. ML algorithms are applied in the damage identification process and in analyzing the anomalous data obtained from

the sensors , thereby improving data quality. In addition, signal processing techniques, such as WT and HHT also

improve data quality and are applied in SHM systems .

ML techniques can be divided into supervised learning (for regression and classification tasks), unsupervised learning

(anomaly detection and clustering) and reinforcement learning. The most popular ML techniques implemented in the

construction of SHM solutions are support vector machines (SVMs) and convolutional neural networks (CNNs) . In
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the case of neural network techniques, damage-sensitive feature selection plays a crucial role in the performance of the

SHM system. SVM optimally classifies features in linear and nonlinear problems. CNN, a subset of neural network (NN)

methods, include convolution operations in the hidden layer of neural networks to classify data, usually in image format.

Other techniques, such as PCA, improve the features of the training data set by making them uncorrelated.

The selection of a ML technique is guided by the limitations of each technique and the requirements of SHM in terms of

damage identification level and operating conditions. Identifying the modal systems of building structures can also be

performed using deep neuronal networks (DNNs) . Table 3 summarizes the ML-based proposals for SHM systems

in buildings under vibration excitation for multi-story structures.

Table 3. N-story building structure health monitoring systems based on machine-learning techniques.

Publication Structure Data
Type Used for Training

Machine-
Learning
Technique

Damage Identification
and Level Year

A four-story physical building
prototype under vibration

table

Acceleration
response data from a physical

prototype
ANN

Damage
existence and

localization
II 2016

An eight-story physical
building mathematical model

Artificially generated dataset
from an algorithm FCN

Damage
existence and

localization
II 2020

A three-story physical
building simulated model

Simulation-generated dataset
from OpenSeesMD software ANN

Damage
detection and
localization

II 2017

30 buildings including 3, 5
and 7 stories with different

structural parameters

Simulation-generated dataset
from Raumoko3D software ANN

Damage
detection and
localization

II 2017

An instrumented main steel
frame

Experimental simulation from
a physical prototype with
modal shaker excitation

CNN
Damage

detection and
localization

II 2016

A three-story physical
building-simulated model

Simulation-generated dataset
from OpenSeesMD software SVM

Damage
existence,

localization and
severity

III 2019

A three-story steel frame
structure Intensity-based features SVM Damage

detection I 2019

A seven-story steel structure Simulation-generated dataset ANN

Damage
existence,

localization and
severity

III 2018

A five-story steel structure Simulation-generated dataset ANN
Damage

detection and
localization

II 2008

3.3. Model Type Comparative in Building SHM Systems

Table 4 analyzes the advantages and disadvantages of applying the physics-based model and the data-based model

based on reviewing the proposals mentioned above.

Table 4. Advantages and disadvantages of a physics-based model and data-based models in SHM building applications.
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Model
Approach Advantages Disadvantages

Physics-
based SHM

The model parameters have a straightforward

physical interpretation. Stiffness changes and

displacements are consistent as damage-

sensitive features.

It can reach all the levels of damage

identification if the parameters are defined or

estimated in the building structure.

The effect of the variation of the parameters

can be estimated in the final result of the

model. Parameter variation allows the

simulation of different scenarios, and the

structural safety thresholds can be

established.

The calculations of the solution of the model

equations may not be feasible for real-time SHM

applications, where the complexity of the structure

requires long processing times.

The uncertainties and changing parameters may

reduce the accuracy of the output model.

Therefore, an estimation using other methods,

such as model-based techniques, is encouraged.

Data-based
SHM

Noise and environmental effects on the data

collected by the sensors can be minimized for

the classification performed by the ML model.

Damage identification can be performed even

if the parameters of the structure are unknown

or cannot be estimated.

The solution process is hidden from the user, so

the rationale for successful damage classification

is not explicit.

The training data set must be large enough to

avoid overfitting, especially in algorithms such as

CNN. In addition, obtaining the training samples

of damage states is in most cases limited to an

artificially generated dataset from simulations.

Computational training times can be costly for

some ML algorithms (SVM, for example). Real-

time SHM monitoring systems require faster

methods such as NN solutions.

Recent proposals implement hybrid approaches that improve SHM damage identification models and integrate physics-

based and data-driven modeling solutions. One of the most common strategies is to build artificial datasets used to train

ML models from FEM-generated data. Conversely, FEM parameters can be estimated from the output of an ML

regression model and improve a structural virtual model.
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