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Artificial Intelligence (AI)-based algorithms, in particular, Deep Neural Networks (DNNs), have recently revolutionized

image creation. Precise segmentation of lesions may contribute to an efficient diagnostics process and a more effective

selection of targeted therapy. For example, an AI-based algorithm for the segmentation of pigmented skin lesions has

been developed, which enables diagnosis in the earlier stages of the disease, without invasive medical procedures. With

flexibility and scalability, AI can be also considered an efficient tool for cancer diagnosis, particularly in the early stages of

the disease.
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1. Introduction

Computer-assisted medicine in general, and cardiac modeling in particular, is by no means an exception from the

successful application of continuous advancements in bioelectricity and biomagnetism . Along with enhancements in

ECG measuring techniques and a constant increase in computational resources, these advances have provoked the

development of many different heart models that can support an automatic and accurate diagnosis of the heart, beat by

beat. Knowledge of the anatomical heart structure is an important part of the evaluation of cardiac functionality. Thus,

cardiac images are one of the significant techniques applied in the assessment of patient health. At present, the image

segmentation procedure is usually performed manually, with an expert sitting in front of a monitor moving a pointer, and

not only does this require time and resources to accomplish, but it is also subject to error depending on the experience of

the expert. In sum, this procedure is time-consuming, inefficient, very often error-prone, and highly user-dependent .

Therefore, the development of an efficient, automatic segmentation procedure is of great importance . However, certain

limitations mean that the automatic segmentation of cardiac images is still an open and difficult task. For example, in the

case of 2D echocardiographic images, a low signal-to-noise ratio, speckles, and low-quality images form some of the

difficulties in determining the contour of the ventricles. Moreover, significant variability in the shape of heart structures

makes it difficult to develop universal automated algorithms. Thus, medical image segmentation has become a significant

area of AI application in medicine. An image can be segmented in several ways, including semantic segmentation (the

assignment of each pixel or voxel of an image to one of the classes) , instance segmentation (pixels of an image are

assigned to the instances of the object) , and panoptic segmentation (the connection of the semantic and instance

segmentation) . The main disadvantage of semantic segmentation is the poor definition of the problem (sometimes

multiple instances can be abstracted into a single class), which translates into inadequate recognition of image details. As

said, in the case of medical images, segmentation is often performed manually, making it a time-consuming and error-

based process. Many algorithms have been proposed to support the automatic segmentation of medical images. It is also

worth stressing that imaging methods in cardiology have particular characteristics that can affect their reproducibility and

reliability. These include spatial, temporal, and contrast resolution as well as tissue penetration and artifact susceptibility.

The ultimate goal is to enable fully automatic segmentation of any clinically acquired CT or MRI. Indeed, MRI offers higher

resolution in comparison to ultrasound and spatial resolutions impact the ability to visualize tiny structures in the heart and

blood vessels. In turn, echocardiography can provide higher temporal resolution compared to MRI or CT processes, which

affects the ability to capture dynamic changes in heart function. Thus, different modalities have different capabilities in

distinguishing between different tissue types and contrast agents. MRI often excels in contrast resolution compared to

other diagnostics methods. Therefore, for medical image segmentation (mostly semantic segmentation), different types of

neural networks are applied , see also Table 1. The basic concept of AI application in cardiology is presented in Figure
1.
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Figure 1. Conceptual scheme of the application of AI in cardiology.

Table 1. Top list of used AI models in cardiology, including interventional cardiology.

AI/ML Model Application Fields (In General) Application Fields (In Cardiology) References

ANNs

classification, pattern recognition, image recognition,
natural language processing (NLP), speech

recognition, recommendation systems, prediction,
cybersecurity, object manipulation, path planning,

sensor fusion

prediction of atrial fibrillation,
acute myocardial infarctions, and
dilated cardiomyopathy detection
of the structural abnormalities in

heart tissues

RNNs

ordinal or temporal problems (language translation,
speech recognition, NLP image captioning), time

series prediction, music generation, video analysis,
patient monitoring, disease progression prediction

segmentation of the heart and
subtle structural changes
cardiac MRI segmentation

LSTMs

ordinal or temporal problems (language translation,
speech recognition, NLP, image captioning), time

series prediction, music generation, video analysis,
patient monitoring, disease progression prediction

segmentation and classification of
2D echo images

segmentation and classification of
3D Doppler images

segmentation and classification of
video graphics images and

detection of the AMI in
echocardiography

CNNs

pattern recognition, segmentation/classification,
object detection, semantic segmentation, facial

recognition, medical imaging, gesture recognition,
video analysis

cardiac image segmentation to
diagnose CAD

cardiac image segmentation to
diagnose Tetralogy of Fallot

localization of the coronary artery
atherosclerosis

detection of cardiovascular
abnormalities

detection of arrhythmia
detection of coronary artery

disease
prediction of the survival status of

heart failure patients
prediction of cardiovascular

disease
LV dysfunction screening

prediction of premature ventricular
contraction detection

Transformers
NLP, speech processing, computer vision, graph-
based tasks, electronic health records, building

conversational AI systems and chatbots

coronary artery labeling
prediction of incident heart failure

arrhythmia classification
cardiac abnormality detection
segmentation of MRI in case of

cardiac infarction
classification of aortic stenosis

severity
LV segmentation

heart murmur detection
myocardial fibrosis segmentation

ECG classification

SNNs
pattern recognition, cognitive robotics, SNN

hardware, brain–machine interfaces, neuromorphic
computing

ECG classification
detection of arrhythmia

extraction of ECG features

[8]

[9]

[10]

[11]

[12]

[13]

[14][15]

[16]

[17]

[18]

[19][20][21][22][23]

[24][25][26][27][28]

[29][30]

[31]

[32]

[33]

[34][35]

[36][37]

[38]

[39][40][41][42]

[43]

[44]

[45][46]

[41][47][48]

[49]

[41]

[50]

[51][52][53]

[54][55][56]

[57]



AI/ML Model Application Fields (In General) Application Fields (In Cardiology) References

GANs
image-to-image translation, image synthesis, and

generation, data generation for training, data
augmentation, creating realistic scenes

CVD diagnosis
segmentation of the LA and atrial

scars in LGE CMR images
segmentation of ventricles based

on MRI scans
left ventricle segmentation in

pediatric MRI scans
generation of synthetic cardiac MRI

images for congenital heart
disease research

GNNs
graph/node classification, link prediction, graph

generation, social/biological network analysis, fraud
detection, recommendation systems

classification of polar maps in
cardiac perfusion imaging
analysis of CT/MRI scans

prediction of ventricular arrhythmia
segmentation of cardiac fibrosis

diagnosis of cardiac condition: LV
motion in cardiac MR cine images
automated anatomical labeling of

coronary arteries
prediction of CAD

automation of coronary artery
analysis using CCTA

screening of cardio, thoracic, and
pulmonary conditions in chest

radiograph

QNNs optimization of hardware operations, user interfaces classification of ischemic heart
disease

GA optimization techniques, risk prediction, gene
therapies, medicine development classification of heart disease

2. Artificial Intelligence-Based Support in Cardiology

2.1. Application of the You-Only-Look-Once (YOLO) Algorithm

The You-Only-Look-Once (YOLO) algorithm is an approach that is based on deep learning for object detection . It

depends on the idea that images pass only once through the neural network, and hence the name. This is performed by

dividing the input image into a grid and predicting for each grid cell the bounding box and the probability of that class. The

algorithm predicts different values related to the object, such as the coordinates of the center of the bounding box around

the object, the height and width of the bounding box, the class of the object, and the probability, or the confidence of the

prediction. This way of working may cause the algorithm to detect the object multiple times. To avoid duplicate detections

of the same object the algorithm uses non-maximum suppression (NMS), which works by calculating a metric called

Intersection over Union or (IOU) between the boxes. If the IOU between two boxes is larger than a certain threshold, the

box with a higher confidence score is chosen and the other box is ignored. There have been many improvements to the

YOLO algorithm that provide higher accuracy, faster performance, improved scalability, and greater flexibility for

customization.

In advancing the diagnosis of cardiovascular diseases (CVDs), the YOLOv3 algorithm was developed for the precise

segmentation of the left ventricle (LV) in echocardiography. This method leverages YOLOv3’s powerful feature extraction

capabilities to accurately locate key areas of the LV, including the apex and bottom, facilitating the acquisition of detailed

LV subimages. Employing the Markov random field (MRF) model for initial identification and processing, the method then

applies sophisticated techniques including non-linear least-squares curve fitting for exact LV endocardium segmentation.

YOLOv3’s role is pivotal in ensuring the accuracy and efficiency of this process, highlighting its significance in the early

detection and analysis of CVD . On the other hand, in the realm of cardiac health monitoring and medical image

processing, the Lion-Based Butterfly Optimization model with Improved YOLOv4 was introduced as described by Alamelu

and Thilagamani, . When applied in the prediction of heart disease based on echocardiography, it was found that a

refined version of the segmentation algorithm significantly improves (with an average of 99% accuracy) the analysis of

echocardiographic images, offering more accurate and thorough insights into cardiac health, thus marking a substantial

advancement in cardiac diagnostics technology.

The proposed YOLO-based approach for image segmentation is fast and efficient. It is also quite efficient in terms of the

use of computing resources, which is of key importance considering the huge amounts of cardiological data that need to

be processed. However, this may reduce its level of accuracy compared to more complex segmentation algorithms, which
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is crucial in the case of cardiac images. YOLO-based image segmentation may also lead to a reduction in spatial

resolution in segmentation masks, especially for small or complex structures in radiological images.

2.2. Genetic Algorithms

The analysis of medical data can also be approached using metaheuristic methods such as Genetic Algorithms (GAs),

Evolutionary Algorithms (EAs) in particular, and Artificial Immune Systems (AISs) that search the possible solution space

based on mechanisms taken from the theory of evolution and natural immune systems. GAs can also be used to improve

diagnosis as well as the selection of targeted therapy in the field of cardiology. Reddy et al.  applied GAs to the

diagnostics of early-stage heart disease, which has crucial implications in the selection of further therapy methods. For

example, GAs allowed for the optimization of classification rules. As a consequence, the level of accuracy increased and

the computational cost was reduced (due to the simplification of the selection process). GAs can also be applied to the

determination of personalized parameters of the cardiomyocyte electrophysiology model . Here, the Cauchy mutation

was applied. In most cases, GAs were used to limit the number of parameters that are then used as input to another AI-

based algorithm, such as a Support Vector Machine (SVM) . Genetic Algorithms can effectively search for optimal

segmentation solutions in the case of heart image segmentation, where anatomical structures may have different shapes.

However, GAs may exhibit difficulties with complex limitations or domain-specific knowledge in cardiac image

segmentation tasks. On the other hand, GAs can also be effective in the optimization of the input parameters to neural

networks. They are inherently robust concerning noise and local optima. This is an important feature taking into account

motion artifacts or imaging noise in cardiac image segmentation. A huge disadvantage of GAs is the cost of computing

large search spaces or high-dimensional feature spaces, which is crucial, especially for real-time computations or in

clinical settings (such as may occur in cardiology applications). Thus, finding the optimal parameter can be difficult and

time-consuming.

2.3. Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks whose structure and principle of operation are to some extent modeled on

the functioning of fragments of the real nervous system (the brain) . This computational invention contributes to the

development of medical imaging, especially in cardiology, where their design, inspired by the human brain, enables them

to interpret complex patterns within medical data effectively. ANNs consist of layers composed of several neurons, which

apply specific weights and biases to the inputs. These neurons utilize non-linear activation functions that enable the

network to detect complex patterns and relationships that linear functions might overlook. The output layer plays a pivotal

role in making predictions or classifications based on the analysis, such as identifying signs of heart disease, classifying

different cardiac conditions, or determining the severity of a disorder . In cardiology, the ability to detect conditions

accurately and at an early stage is of paramount importance, and the application of ANNs for the analysis of medical

images is an important development in this area. Considering the high global prevalence of cardiovascular diseases, the

application of ANNs in cardiac imaging may substantially improve diagnostic techniques . ANNs provide an efficient

computational tool to detect structural abnormalities in heart tissues. They also play a vital role in assessing cardiac

function, evaluating important metrics such as ejection fraction, and analysis of blood flow patterns, essential for

diagnosing heart failure or valvular heart disease.

ANNs can automatically learn hierarchical features from raw image data without the need to manually extract features,

which is beneficial for segmenting complex organs such as the heart. However, ANN application in the field of medical

image processing requires converting two-dimensional images to one-dimensional vectors. This increases the number of

parameters and increases the cost of calculation. However, as in the case of YOLO-based segmentation algorithms, an

ANN-based approach also requires large and good-quality training data to provide high accuracy. 

2.4. Convolutional Neural Networks

Another neural network that has been applied to medical image processing is the Convolutional Neural Network (CNN).

As opposed to traditional neural networks such as ANNs, which typically process data in a straightforward, sequential

manner, CNNs can discern spatial relationships within datasets. This is due to the way they are designed and

constructed, intended as they are to maintain and interpret the spatial structure of input data, an attribute that is vital for

the accurate assessment of medical images. For example, Roy et al.  applied CNNs to cardiac image segmentation to

diagnose coronary artery disease (CAD). CNNs were used to analyze 2D X-ray images, significantly enhancing image

segmentation accuracy and setting new standards in medical image analysis. Similarly, as in Gao et al. , Galea et al.

 proposed combining U-Net and DeepLabV3+ CNN architectures for the segmentation of cardiac images from smaller

datasets. Tandon et al.  applied CNNs in cardiology with a specific focus on cardiovascular imaging for patients with

Repaired Tetralogy of Fallot (RTOF). A CNN originally designed for ventricular contouring was retrained and adapted to
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the complexities of RTOF. This enabled an increase in algorithm accuracy. In turn, Stough et al.  developed a fully

automatic method for segmenting heart substructures in 2D echocardiography images using CNNs that was validated

against a robust dataset, and Sander and Išgum  focused on enhancing the segmentation of cardiac structures in

cardiac MRI. This method integrates automatic segmentation with an assessment of segmentation uncertainty to identify

potential local failures. The measures of predictive uncertainty were calculated and trained by another CNN to detect local

segmentation errors for potential expert correction. This approach combining automatic segmentation with manual

correction of detected errors could significantly reduce the time required for expert segmentation.

In the context of cardiology, fully connected layers of CNNs are responsible for synthesizing information to perform critical

analytical tasks. These include classifying different cardiac conditions, detecting anomalies such as irregularities in heart

size or shape, and making predictive assessments based on a comprehensive analysis of cardiac structure and function.

CNNs are particularly good at handling complex datasets from various imaging modalities in cardiology, including MRI, CT

scans, and ultrasound . The strength of CNNs lies in their ability to handle high-dimensional data and to effectively

capture the spatial structures within medical images in cardiology. This leads to more precise and comprehensive

analyses of cardiac health. However, in the case of sparse or partial input data, their use is difficult and does not provide

high prediction accuracy, while high segmentation accuracy is associated with high computational costs. Nor do CNNs

take into account spatial relations in images which is important in the case of cardiology. To overcome this limitation,

Capsule Networks (CNs) were introduced . Their output is in the form of vectors that enable some spatial relations to

be saved. The disadvantage of this approach is the lack of verification on a large dataset.

2.5. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are known for their ability to model long-term dependencies and are crucial for

capturing the intricate details of cardiac structures. Unlike traditional feedforward neural networks that process inputs in a

one-directional manner, RNNs are designed to handle sequences of data. This is achieved through their internal memory,

which allows them to retain information from previous inputs and use it in the processing of new data . In the case of

medical data in the form of echocardiography, and cardiac MRI segmentation, RNNs have shown promising performance

. They also excel in handling the sequential and temporal aspects of both MRI and CT data, crucial for monitoring

dynamic changes in cardiac tissues over time . In turn, Wahlang et al.  combined RNNs and their variations in Long

Short-Term Memory (LSTM) successfully in the segmentation and classification of 2D echo images, 3D Doppler images,

and video graphic images. Wang and Zhang  also considered the segmentation of the left ventricle wall in four-

chamber view cardiac sequential images. RNN was applied to provide detailed information for the initial image, while

LSTM to generate the segmentation result: this approach increases accuracy. Another RRN application in the field of

cardiology was presented by Muraki et al. . Here, simple RNNs, LSTM, and other RNN variations (such as Gated

Recurrent Units (GRU)) were successfully used to detect acute myocardial infarction (AMI) in echocardiography.

RNNs have proven to be well suited to managing the sequential and temporal characteristics inherent in MRI and CT

data, a capability that is essential for accurately tracking the dynamic alterations in cardiac tissues due to the possibility of

effective capturing of long-range non-linear dependencies, such as modeling the risk trajectory of heart failure .

However, one limitation of RNNs is connected with vanishing or exploding gradients.

2.6. Spiking Neural Networks

Calculations related to the analysis of cardiac data are very time-consuming and involve a great deal of computing

resources. One alternative that can potentially reduce computational cost could be Spiking Neural Networks (SNNs).

Currently, SNNs are not yet as accurate in comparison to traditional neural networks: they have characteristics that are

more similar to biological neurons . They may also be advantageous in wearable and implantable devices for their

energy efficiency and real-time processing capabilities. This makes them ideal for continuous cardiac monitoring, as they

require less frequent recharging or battery replacement, a significant benefit for devices like cardiac monitors and

pacemakers. For example, Rana and Kim  modify the synaptic weights such as to be binary. This operation provides a

reduction in computational complexity and power consumption. This is crucial, especially in the context of wearable

monitors where continuous monitoring is key but the constraints of power and computational resources are limiting

factors. Their binarized SNN model may be a highly efficient alternative for ECG classification, setting a new standard in

continuous cardiac health monitoring technologies.

SNNs, however, are more computationally efficient (connected to the high level of computational speed and real-time

performance). As a consequence, SNNs consume less energy, which translates into better use of hardware resources.

However, their learning algorithms require improvement (in terms of accuracy gains), in comparison, for example, to the

accuracies achieved by the application of CNNs . In the case of SNNs, the requirement of increasingly powerful
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hardware is also of high importance. SNNs also have a significant limitation in practical applications due to the smaller

number of available tools, libraries, and structures in comparison to other neural network types. SNNs also provide worse

results in terms of accuracy compared to traditional approaches. To fully exploit the potential of SNNs, including detecting

anomalies in biomedical signals and designing more detailed networks, the SNNs’ learning mechanisms/rules need to be

improved. 

2.7. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are network architectures that consist of two core components: the generator

and the discriminator. The generator shoulders the responsibility of creating data that faithfully emulates specific data

(artificial data identical to real data) to cheat the discriminator. It initiates the process with an input of random noise,

meticulously refining it through multiple layers of neural network architecture. Each layer integrated within the generator

network fulfills a distinct role, harnessing techniques such as convolutional or fully connected layers. These layers operate

cohesively to progressively metamorphose the initial noise input into an output that becomes increasingly

indistinguishable from the target data. A discriminator is designed to distinguish artificial data (produced by a generator)

from real data based on small nuances. Thus, the core concept of this solution is to train two networks that compete with

each other. As a consequence, they are expected to produce more authentic data . GANs seem to be promising

computational tools to elevate patient care and improve clinical outcomes, in particular in the field of cardiology. First, the

most important GAN application field is CVD diagnosis . Retinal fundus images were used as input to the network. This

approach led to the analysis of microstructural alterations within retinal blood vessels to pinpoint pivotal risk factors

associated with CVD, such as Hypertensive Retinopathy (HR) and Cholesterol-Embolization Syndrome (CES). Moreover,

the incorporation of a retrained ImageNet model for customized image classification further bolstered predictive accuracy.

GANs have shown exceptional proficiency in handling complex and varied cardiac datasets. They generate highly realistic

images, aiding training and research, particularly where access to real patient data is limited. GANs are instrumental in

enlarging existing datasets and creating diverse and extensive data for training more accurate and robust diagnostic

models. In addition to image generation, GANs are adept at image-to-image translation tasks, a significant feature in

medical imaging . They can transform MRI images into CT scans, offering different perspectives of the same

anatomical structure without needing multiple imaging modalities. This is particularly beneficial in scenarios where certain

imaging equipment might be unavailable. However, the main disadvantages of GANs are the complex training needed

that does not necessarily lead to hoped-for results, a tendency to overfit, and high computational costs. Moreover, GANs

are difficult to interpret, which is of key importance in medicine, especially in cardiology.

2.8. Graph Neural Networks

If the data format is approached differently, as in non-Euclidean space in the form of graphs, it can be understood in terms

of vertices (i.e., objects). Then, the concept of Graph Neural Networks (GNNs) can be applied . All relations in this type

of neural network are expressed as those between nodes and edges of the graph. These networks are designed to

handle graph data that form a critical aspect in medical fields, especially when the intricate relationships and connections

between data points are essential for accurate diagnosis and health condition analysis. This principle of operation is

useful in medical imaging, especially in neuroimaging and molecular imaging, where understanding complex relationships

is crucial . In the field of cardiology, GNNs have been effectively employed in several key areas. They have been

used in the classification of polar maps in cardiac perfusion imaging, a critical technique for assessing heart muscle

activity and blood flow. Another significant application of GNNs in cardiology is the estimation of left ventricular ejection

fraction in echocardiography. This measurement is vital for evaluating heart health, specifically in assessing the volume of

blood the left ventricle pumps out with each contraction . This allows for more accurate analyses through an

understanding of the intricate graph structures of the heart’s imagery. GNNs are also being utilized in analyzing CT/MRI

scans. This approach can also be used to interpret the relationships and structures within the scan, providing detailed

insights into various conditions and helping in diagnosis and treatment planning .

GNNs provide a powerful tool for understanding and interpreting complex data structures, such as those found in medical

image processing. One of the key strengths of GNNs is their adaptability to varying input sizes and structures, an

essential feature in medical imaging where patient data can greatly differ. The architecture of GNNs is tailored to process

and interpret graph-structured data, making it a powerful tool in areas such as medical image processing where data often

forms complex networks. This specialized structure of GNNs sets them apart in their ability to handle data that is

inherently interconnected, such as neurological networks or molecular structures. It is also worth stressing that GNNs

were created for tasks that cannot be effectively solved by other types of networks based on input data in Euclidean

space. However, GNNs are difficult to interpret. On the other hand, computational cost is also a crucial parameter. Here,
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QNNs may provide some insight, while the GA can effectively help in the optimization of the input parameters to neural

networks.

2.9. Transformers

One further type of neural network that has recently come into focus in the field of medicine concerns transformers. These

learn rules based on the context and tracking the relations between the data. Originally, they were networks used for

natural language processing (NLP). Their effectiveness in these tasks resulted in the development of transformers such

as the Detection Transformer (DETR) for tasks related to vision analysis , the Swin-Transformer , the Vision

Transformer (ViT) , and the Data-Efficient Image Transformer (DeiT) . The DETR is dedicated to object detection

which also includes manual analytical processes, and it uses CNN to learn 2D representations of the input data (images).

In turn, the ViT converts input to a series of fixed-size non-overlapping patches and treats them as a token. Each of them

encodes the spatial position of each part of the image to provide spatial information, while the spatial information of the

pixels is lost during tokenization. However, ViTs require large training datasets. On the other hand, DeiTs also provide high

accuracy in the case of small training datasets, while Swin-Transformers allow the cost of calculations to be reduced.

They process an image divided into overlapping areas showing tokens at multiple scales with a hierarchical structure

using a shifted window (local self-attention). The transformer principle of operation is based on the self-attention

mechanism. This enables the network to decide on the importance of different parts of the input data for future prediction

(i.e., weight). This may be beneficial for the evaluation of the relationships between different regions in medical images.

The application of transformer networks allows for a deeper understanding of cardiac function, which aids in refining

diagnostic methods and improving treatment strategies. For example, Jungiewicz et al. focused on stenosis detection in

coronary arteries, comparing different variants of the Inception Network with the ViT . They analyzed small fragments

from coronary angiography videos, highlighting the role of dataset configuration in model performance. A key innovation in

their approach is the use of Sharpness-Aware Minimization (SAM) alongside Vision Transformers (VTs), which enhances

the accuracy and reliability of stenosis detection. They also employed Explainable AI techniques to understand the

differences in classification performance between the models. Their findings indicate that while Convolutional Neural

Networks generally outperform transformer-based architectures, the gap narrows significantly with the addition of SAM to

VTs. In some measures, the SAM-VT model even surpasses other models. It turned out that ViT can effectively be applied

to diagnose coronary angiography. Zhang et al.  present a Topological Transformer Network (TTN) for automated

coronary artery branch labeling in Cardiac CT Angiography (CCTA). The TTN, inspired by the success of transformers in

sequence data analysis, treats vessel branch labeling as a sequence labeling learning problem. It introduces a unique

topological encoding to represent spatial positions of vessel segments within the arterial tree, enhancing classification

accuracy. The network also includes a segment-depth loss function to address the class imbalance between primary and

secondary branches. The effectiveness of a TTN is demonstrated in CCTA scans, where it achieves unprecedented

results, outperforming existing methods in overall branch labeling and side branch identification. TTNs mark a departure

from traditional methods, representing the first transformer-based vessel branch labeling method in the field. The

integration of this method into computer-aided diagnosis systems can enhance the generation of cardiovascular disease

diagnosis reports, thereby improving patient outcomes in cardiac care. 

This approach significantly enhances the detection and analysis of myocardial ischemia and infarction by tracking wall-

motion abnormalities in the left ventricle. The core innovation is the integration of a co-attention mechanism within the

Spatial Transformer Network (STN), which improves feature extraction between frames for smoother motion fields and

enhanced interpretability in noisy 3D echocardiography images. Additionally, a novel temporal regularization term guides

the motion of the left ventricle, producing smooth and realistic cardiac displacement paths. The CA-STN outperforms

traditional methods that rely on heavy regularization functions, marking a new standard in cardiac motion tracking. Strain

analysis using the Co-Attention STNs aligns with matched SPECT perfusion maps, illustrating the clinical utility of 3D

echocardiography for localizing and quantifying myocardial strain following ischemic injury. This study contributes a novel

tool for cardiac imaging and opens new possibilities for early detection and interventions in myocardial injuries.

Thus, an approach based on transformers in cardiological data segmentations offers advantages such as global context

modeling, parallel processing, attention mechanisms, transfer learning, and interpretability for cardiac image

segmentation. However, transformers process the input data sequentially, which may cause some important information to

be missed and the segmentation performed (especially for tasks requiring precise localization of anatomical structures in

heart images) to be inaccurate. Like CNN and the YOLO algorithm, this approach requires a large amount of good-quality

data and the involvement of significant computational resources. Careful hyperparameter tuning and regularization

techniques can overcome this disadvantage, but potentially increase the complexity of the training process.
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2.10. Quantum Neural Networks

Recently, some work has also been devoted to the development of quantum neural networks (QNNs) that are based on

the idea of quantum mechanics . These may have huge potential to speed up calculations and reduce the

computational costs associated with them. This approach can be developed in two ways related to the segmentation of

medical images. The first is the use of quantum circuits to train classical neural networks, and the second is the design

and training of quantum networks, as proposed by Mathur et al. . Indeed, Shahwar et al.  showed the potential of

QNNs in the classification of Alzheimer’s detection, and Ullah et al.  proposed a quantum version of the Fully

Convolutional Neural Network (FCNN) as applied to a challenge that concerned the classification of ischemic heart

disease. This allowed for a prediction accuracy of over 80 percent. However, the approach based on quantum neural

networks requires further improvement. When it comes to interventional practice, QNNs have the potential for stenosis

detection in X-ray coronary angiography , and they can be also applied to selecting medicines for patients with high

accuracy . Thus, QNNs may also provide some insight into the reduction in computational cost.

3. Evaluation Metrics in Medical Image Segmentation

Artificial Intelligence has the chance to become a high-precision tool in medicine. However, there are certain technical

risks (TERs) connected with the application of AI in clinical and educational practice, including algorithm performance,

legal regulation, and safety. For example, it is known that small, even imperceptible changes in the training dataset can

drastically change the results of predictions, which in medicine can have very serious consequences and influence

learning. The key to the evaluation of AI adaptability is to use an appropriate metric to assess the correctness and

accuracy of different kinds of forecasts including clinical prognoses and for this to be understood by users . For

example, overfitting between training and testing datasets will reduce the accuracy of the algorithm. Other crucial factors

that influence the qualitative efficiency of the AI-based algorithm’s dataset include data availability issues. However, even

if developers do not have sufficient quantity and quality of data, cross-validation can be applied . This procedure helps

avoid overfitting by the selection of a subset. Thus, the choice of a proper evaluation metric depends on the specific task

type. The binary classifier Dice coefficient (also called the Sørensen–Dice index) and the Index of Union (IoU) are most

commonly used in medical image segmentation metrics. However, in the field of cardiology, accuracy is of particular

concern.

Moreover, an important element in improving the effectiveness of cardiology data segmentation is the collection of as

much reliable, good-quality data as possible while keeping class balance in mind. This procedure should take into account

input data diversity that helps AI models better generalize unseen cases while their reliability is improved. It is also

necessary to provide diverse and representative input data whenever possible, which can help mitigate bias in AI-based

algorithms. Another issue related to data is the application of the open data policy following UNESCO guidelines

(especially for scientific applications, and research) so that more efficient AI algorithms can be developed in the area of ​​

cardiology. Moreover, compliance with ethical and bioethical standards in the collection, storage, and use of medical data

is essential for the development of reliable AI systems in cardiology. As a consequence, the establishment of standards for

the quality, integrity, and interoperability of cardiology data used in AI applications in cardiology as well as the

development of the protocols for the validation and regulation of AI-based algorithms is of high importance. It is also

necessary to develop guidelines on how to integrate artificial intelligence technologies into cardiology workflows as well as

strategies for managing risks associated with the implementation of AI-based technologies in cardiology. Finally, it should

be the responsibility of the cardiology community to ensure the control of results and feedback loops in the

implementation of mechanisms for monitoring the performance of AI algorithms in cardiology and the collection of

feedback from clinicians and patients.
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