

Artificial Intelligence-Based Support in Cardiology

Subjects: **Computer Science, Artificial Intelligence**

Contributor: Zofia Rudnicka , Klaudia Proniewska , Mark Perkins , Agnieszka Pregowska

Artificial Intelligence (AI)-based algorithms, in particular, Deep Neural Networks (DNNs), have recently revolutionized image creation. Precise segmentation of lesions may contribute to an efficient diagnostics process and a more effective selection of targeted therapy. For example, an AI-based algorithm for the segmentation of pigmented skin lesions has been developed, which enables diagnosis in the earlier stages of the disease, without invasive medical procedures. With flexibility and scalability, AI can be also considered an efficient tool for cancer diagnosis, particularly in the early stages of the disease.

Artificial Intelligence

Machine Learning

Virtual Reality

Extended Reality

Mixed Reality

cardiology

personalized medicine

Metaverse

Augmented Reality

1. Introduction

Computer-assisted medicine in general, and cardiac modeling in particular, is by no means an exception from the successful application of continuous advancements in bioelectricity and biomagnetism ^[1]. Along with enhancements in ECG measuring techniques and a constant increase in computational resources, these advances have provoked the development of many different heart models that can support an automatic and accurate diagnosis of the heart, beat by beat. Knowledge of the anatomical heart structure is an important part of the evaluation of cardiac functionality. Thus, cardiac images are one of the significant techniques applied in the assessment of patient health. At present, the image segmentation procedure is usually performed manually, with an expert sitting in front of a monitor moving a pointer, and not only does this require time and resources to accomplish, but it is also subject to error depending on the experience of the expert. In sum, this procedure is time-consuming, inefficient, very often error-prone, and highly user-dependent ^[2]. Therefore, the development of an efficient, automatic segmentation procedure is of great importance ^[3]. However, certain limitations mean that the automatic segmentation of cardiac images is still an open and difficult task. For example, in the case of 2D echocardiographic images, a low signal-to-noise ratio, speckles, and low-quality images form some of the difficulties in determining the contour of the ventricles. Moreover, significant variability in the shape of heart structures makes it difficult to develop universal automated algorithms. Thus, medical image segmentation has become a significant area of AI application in medicine. An image can be segmented in several ways, including semantic segmentation (the assignment of each pixel or voxel of an image to one of the classes) ^[4], instance segmentation (pixels of an image are assigned to the instances of the object) ^[5], and panoptic segmentation (the connection of the semantic and instance segmentation) ^[6]. The main disadvantage of semantic segmentation is the

poor definition of the problem (sometimes multiple instances can be abstracted into a single class), which translates into inadequate recognition of image details. As said, in the case of medical images, segmentation is often performed manually, making it a time-consuming and error-based process. Many algorithms have been proposed to support the automatic segmentation of medical images. It is also worth stressing that imaging methods in cardiology have particular characteristics that can affect their reproducibility and reliability. These include spatial, temporal, and contrast resolution as well as tissue penetration and artifact susceptibility. The ultimate goal is to enable fully automatic segmentation of any clinically acquired CT or MRI. Indeed, MRI offers higher resolution in comparison to ultrasound and spatial resolutions impact the ability to visualize tiny structures in the heart and blood vessels. In turn, echocardiography can provide higher temporal resolution compared to MRI or CT processes, which affects the ability to capture dynamic changes in heart function. Thus, different modalities have different capabilities in distinguishing between different tissue types and contrast agents. MRI often excels in contrast resolution compared to other diagnostics methods. Therefore, for medical image segmentation (mostly semantic segmentation), different types of neural networks are applied [2], see also **Table 1**. The basic concept of AI application in cardiology is presented in **Figure 1**.

Figure 1. Conceptual scheme of the application of AI in cardiology.

Table 1. Top list of used AI models in cardiology, including interventional cardiology.

AI/ML Model	Application Fields (In General)	Application Fields (In Cardiology)	References
ANNs	classification, pattern recognition, image recognition, natural language processing (NLP), speech recognition, recommendation systems, prediction, cybersecurity, object manipulation, path planning, sensor fusion	prediction of atrial fibrillation, acute myocardial infarctions, and dilated cardiomyopathy detection of the structural abnormalities in heart tissues	[8] [9]
RNNs	ordinal or temporal problems (language translation, speech recognition, NLP image captioning), time series prediction, music generation, video analysis, patient monitoring, disease progression prediction	segmentation of the heart and subtle structural changes cardiac MRI segmentation	[10] [11]

AI/ML Model	Application Fields (In General)	Application Fields (In Cardiology)	References
LSTMs	ordinal or temporal problems (language translation, speech recognition, NLP, image captioning), time series prediction, music generation, video analysis, patient monitoring, disease progression prediction	segmentation and classification of 2D echo images segmentation and classification of 3D Doppler images segmentation and classification of video graphics images and detection of the AMI in echocardiography	[12] [13]
CNNs	pattern recognition, segmentation/classification, object detection, semantic segmentation, facial recognition, medical imaging, gesture recognition, video analysis	cardiac image segmentation to diagnose CAD cardiac image segmentation to diagnose Tetralogy of Fallot localization of the coronary artery atherosclerosis detection of cardiovascular abnormalities detection of arrhythmia detection of coronary artery disease prediction of the survival status of heart failure patients prediction of cardiovascular disease LV dysfunction screening prediction of premature ventricular contraction detection	[14][15] [16] [17] [18] [19][20][21][22] [23][24][25][26] [27][28][29][30] [31] [32] [33] [34][35]
Transformers	NLP, speech processing, computer vision, graph-based tasks, electronic health records, building conversational AI systems and chatbots	coronary artery labeling prediction of incident heart failure arrhythmia classification cardiac abnormality detection segmentation of MRI in case of cardiac infarction classification of aortic stenosis severity LV segmentation heart murmur detection myocardial fibrosis segmentation ECG classification	[36][37] [38] [39][40][41][42] [43] [44] [45][46] [41][47][48] [49] [41] [50]
SNNs	pattern recognition, cognitive robotics, SNN hardware, brain-machine interfaces,	ECG classification detection of arrhythmia	[51][52][53] [54][55][56]

AI/ML Model	Application Fields (In General)	Application Fields (In Cardiology)	References
	neuromorphic computing	extraction of ECG features	[57]
GANs	image-to-image translation, image synthesis, and generation, data generation for training, data augmentation, creating realistic scenes	CVD diagnosis segmentation of the LA and atrial scars in LGE CMR images segmentation of ventricles based on MRI scans left ventricle segmentation in pediatric MRI scans generation of synthetic cardiac MRI images for congenital heart disease research	[58] [59] [60] [61] [62]
GNNs	graph/node classification, link prediction, graph generation, social/biological network analysis, fraud detection, recommendation systems	classification of polar maps in cardiac perfusion imaging analysis of CT/MRI scans prediction of ventricular arrhythmia segmentation of cardiac fibrosis diagnosis of cardiac condition: LV motion in cardiac MR cine images automated anatomical labeling of coronary arteries prediction of CAD automation of coronary artery analysis using CCTA screening of cardio, thoracic, and pulmonary conditions in chest radiograph	[63][64] [65] [64] [66] [67] [68] [69] [70]
QNNs	optimization of hardware operations, user interfaces	classification of ischemic heart disease	[20]
GA	optimization techniques, risk prediction, gene therapies, medicine development	classification of heart disease	[71]

3. Evans, L.M.; Sözümert, E.; Keenan, B.E.; Wood, C.E.; du Plessis, A. A Review of Image-Based Simulation Applications in High-Value Manufacturing. *Arch. Comput. Methods Eng.* 2023, 30, 1495–1552.

4. Arafin, P.; Bilal, A.M.; Issa, A. Deep Learning-Based Concrete Defects Classification and Detection Using Semantic Segmentation. *Struct. Health Monit.* 2024, 23, 383–409.

2.1. Application of the You-Only-Look-Once (YOLO) Algorithm

5. Ye-Bin, M.; Choi, D.; Kwon, Y.; Kim, J.; Oh, T.H. ENInst: Enhancing Weakly-Supervised Low-Shot Instance Segmentation. *Pattern Recognit.* 2024, 145, 109888. The You-Only-Look-Once (YOLO) algorithm is an approach that is based on deep learning for object detection [72][73]. It depends on the idea that images pass only once through the neural network, and hence the name. This is performed by dividing the input image into a grid and predicting for each grid cell the bounding box and the

7. Gholami, B.; Korkmaz, T. A. *Algorithmic Differentiation Unified 3D and 2D Panoptic Segmentation via Dynamic Shifting Networks*. *IEEE Trans. Pattern Anal. Mach. Intell.* **2024**, *16*, the class of the object, and the probability, or the confidence of the prediction. This way of working may cause the algorithm to detect the object multiple times. To avoid duplicate detections of the same object, the algorithm uses non-maximum suppression (NMS), which works by calculating a metric called Intersection over Union or (IOU) between the *Image Scan Seg-Mentation and Intelligent Visual-Content Generation-a Concise Over-View*. *Electronics* **2024**, *13*, 746.

8. Sammani, A.; Bagheri, A.; Van Der Heijden, P.G.M.; Te Riele, A.S.J.M.; Baas, A.F.; Oosters, G.A.J.; Oberki, D.; Asselbergs, F.W. *Automatic Multilabel Detection of ICD10 Codes in Dutch Cardiology Discharge Letters Using Neural Networks*. *NPJ Digit. Med.* **2021**, *4*, 37.

In advancing the diagnosis of cardiovascular diseases (CVDs), the YOLOv3 algorithm was developed for the precise segmentation of the left ventricle (LV) in echocardiography. This method leverages YOLOv3's powerful feature extraction capabilities to accurately locate key areas of the LV, including the apex and bottom, facilitating Computed Tomography Angiography: From Anatomy to Prognosis. *BioMed Res. Int.* **2020**, *2020*, the acquisition of detailed LV subimages. Employing the Markov random field (MRF) model for initial identification and processing, the method then applies sophisticated techniques including non-linear least-squares curve fitting for exact LV endocardium segmentation. YOLOv3's role is pivotal in ensuring the accuracy and efficiency of this process, highlighting its significance in the early detection and analysis of CVDs. On the other hand, in the realm of heart failure: The Past, Present, and Future. *Rev. Cardiovasc. Med.* **2021**, *22*, 1095–1113.

11. Samielyeganeh, M.E.; Ranmat, R.W.; Khalid, F.B.; Kasmiran, K.B. *An overview of deep learning techniques in echocardiography image segmentation*. *J. Theor. Appl. Inf. Technol.* **2020**, *98*, 3561–3572. Improved YOLOv1 was introduced as described by Alamelu and Thilagamani. ^[75] When applied in the prediction of heart disease based on echocardiography, it was found that a refined version of the segmentation algorithm significantly improves (with an average of 99% accuracy) the analysis of echocardiographic images, offering more accurate and thorough insights into cardiac health, thus marking a substantial advancement in cardiac diagnostics.

12. Wahlang, I.; Kumar Maji, A.; Saha, G.; Chakrabarti, P.; Jasinski, M.; Leonowicz, Z.; Jasinska, E.; Dimauro, G.; Bevilacqua, V.; Pecchia, L. *Electronics Article*. *Electronics* **2021**, *10*, 495.

13. Muraki, R.; Tefamoto Ito, A.; Sugimoto, K.; Sugimoto, K.; Yamada, A.; Watanabe, E. *Automated Detection Scheme for Acute Myocardial Infarction Using Convolutional Neural Network and Long Short-Term Memory*. *PLoS ONE* **2022**, *17*, e0264002. The proposed YOLO-based approach for image segmentation is fast and efficient. It is also quite efficient in terms of the use of computing resources, which is of key importance considering the huge amounts of cardiological data that need to be processed. However, this may reduce its level of accuracy compared to more complex segmentation algorithms, which is crucial in the case of cardiac images. YOLO-based image segmentation may also lead to a reduction in spatial resolution in segmentation masks, especially for small or complex structures in radiological images.

14. Roy, S.S.; Hsu, C.H.; Samaran, A.; Goyal, R.; Pande, A.; Balas, V.E. *Vessels Segmentation in Angiograms Using Convolutional Neural Network: A Deep Learning Based Approach*. *CMES Comput. Model. Eng. Sci.* **2023**, *136*, 241–255.

15. Liu, J.; Yuan, G.; Yang, C.; Song, H.; Luo, L. *An Interpretable CNN for the Segmentation of the Left Ventricle in Cardiac MRI by Real-Time Visualization*. *CMES Comput. Model. Eng. Sci.* **2023**, *135*, 1571–1587. The analysis of medical data can also be approached using metaheuristic methods such as Genetic Algorithms (GAs), Evolutionary Algorithms (EAs) in particular, and Artificial Immune Systems (AISs) that search the possible

16. Tandon, A. *Artificial Intelligence in Pediatric and Congenital Cardiac Magnetic Resonance Imaging to Intelligence-Based Cardiology and Cardiac Surgery: Artificial Intelligence and Human al. *Optimization in Cardiovascular Medicine: Academic Press*; London, UK: 2024; pp. 201–209*

17. Candemir, S.; White, R.D.; Demirel, M.; Gupta, V.; Bigelow, M.T.; Prevedello, L.M.; Erdal, B.S. the level of accuracy increased and the computational cost was reduced (due to the simplification of the selection of further therapy methods. For example, GAs allowed for the optimization of classification rules. As a consequence, GAs can also be applied to the determination of personalized parameters of the cardiomyocyte

electrocardiogram (ECG) and [76] coronary angiography with a Deep 3Dimensional Convolutional Neural Network to predict the number of imaging planes [2020, 83, 101721].

18. Singh, N.; Gunjan, V.K.; Shaik, F.; Roy, S. Detection of Cardio Vascular Abnormalities Using Gradient Descent Optimization and CNN. *Health Technol.* 2024, 14, 155–168.

19. Banerjee, D.; Dey, S.; Pal, A. An SNN Based ECG Classifier for Wearable Edge Devices. In *Proceedings of the NeurIPS 2022 Workshop on Learning from Time Series for Health*; New Orleans, LA, USA, 2 December 2022.

20. Ullah, U.; Garcia, A.; Jurado, O.; Diez Gonzalez, I.; Garcia-Zapirain, B. A Fully Connected Quantum Convolutional Neural Network for Classifying Ischemic Cardiopathy. *IEEE Access* 2022, 10, 134592–134605.

2.3. Artificial Neural Networks

Congestive Heart Failure ECG Signals Using LSTM and Hybrid CNN-SVM Deep Neural Networks

Artificial Neural Networks (ANNs) are networks whose structure and principle of operation are to some extent modeled on the functioning of fragments of the real nervous system (the brain) [79][80]. This computational invention contributes to the development of medical imaging, especially in cardiology, where their design, inspired by the CNN Architecture Based Various Optimizers-Networks. *Multimed. Tools Appl.* 2022, 81, 41711–41732.

22. Fradi, M.; Khriji, L.; Machhout, M. Real-Time Arrhythmia Heart Disease Detection System Using CNN Architecture Based Various Optimizers-Networks. *Multimed. Tools Appl.* 2022, 81, 41711–41732. composed of several neurons, which apply specific weights and biases to the inputs. These neurons utilize non-linear activation functions that automatically learn features from raw data. This results in highly accurate classifications based on the analysis, such as identifying signs of heart disease, classifying different cardiac conditions, or determining the severity of a disorder [81][82].

In cardiology, the ability to detect conditions accurately and at an early stage is of paramount importance, and the application of ANNs for the analysis of medical images is an important development in this area. Considering the high global prevalence of cardiovascular diseases, the application of ANNs in cardiac imaging may substantially improve diagnostic techniques [83]. ANNs provide an efficient computational tool to detect structural abnormalities in heart tissues. They also play a vital role in assessing cardiac function, evaluating important metrics such as ejection fraction, and analysis of blood flow patterns, essential for diagnosing heart failure or valvular heart disease.

26. Zheng, Z.; Chen, Z.; Hu, F.; Zhu, J.; Tang, Q.; Liang, Y. Electronics Article. *Electronics* 2020, 9, 121.

ANNs can automatically learn hierarchical features from raw image data without the need to manually extract features, which is beneficial for segmenting complex organs such as the heart. However, ANN application in the field of medical image processing requires converting two-dimensional images to one-dimensional vectors. This increases the number of parameters and increases the cost of calculation. However, as in the case of YOLO-based segmentation algorithms, an ANN-based approach also requires large and good-quality training data to provide high accuracy.

29. Zhang, Y.; Liu, S.; He, Z.; Zhang, Y.; Wang, C. A CNN Model for Cardiac Arrhythmias

2.4. Convolutional Neural Networks

30. Khozeimeh, F.; Sharifrazi, D.; Izadi, N.H.; Hassannataj Joloudari, J.; Shoeibi, A.; Alizadehsani, R.; Tartibi, M.; Hussain, S.; Sani, Z.A.; Khodatars, M.; et al. RF-CNN-F: Random Forest with

40. **Convolutional Neural Network Features for Coronary Artery Disease Diagnosis Based on Cardiac (CNN) Model.** *Comput. Biol. Med.* 2022, **142**, 104717.

31. Aslan, M.F.; Sabancı, K.; Durdu, A. A CNN-Based Novel Solution for Determining the Survival Status of Heart Failure Patients with Clinical Record Data: Numeric to Image. *Biomed. Signal Process. Control* 2021, **68**, 102716.

32. Yoon, T.; Kang, D. Bimodal CNN for Cardiovascular Disease Classification by Co-Training ECG Images, Grayscale Images and Scalograms. *Sci. Rep.* 2023, **13**, 2937.

33. Sun, L.; Shang, D.; Wang, Z.; Jiang, J.; Han, F.; Liang, J.; Shen, Z.; Liu, Y.; Zheng, J.; Wu, H.; et al. MSPAN: A Memristive Spike-Based Computing Engine With Adaptive Neuron for Edge Arrhythmia Detection. *Front. Neurosci.* 2021, **15**, 761127.

34. Wang, J.; Zang, J.; Yao, S.; Zhang, Z.; Xue, C. Multiclassification for Heart Sound Signals under Segmenting Heart Substructures in 2D echocardiography images using CNNs that was validated against a robust Multiple Networks and Multi-View Feature Measurement 2024, **225**, 114022.

35. Wang, J.; Liao, S.; Wang, W.; Gao, S.; Wang, S.; Gao, J.; Guo, Y.; Chen, Y.; Wang, Y.; et al. A Fully Automatic Method for Detecting and Segmenting Cardiac Structures in Cardiac MRI. *Comput. Struct. Eng. Civ. Infrastruct. Eng.* 2021, **9**, 1565819–156591.

36. Jungiewicz, M.; Jastrzebski, P.; Wawryka, P.; Przystalski, K.; Sabatowski, K.; Bartus, S. Vision Transformer in Stenosis Detection of Coronary Arteries. *Expert Syst. Appl.* 2023, **228**, 120234.

37. In the context of cardiology, fully connected layers of CNNs are responsible for synthesizing information to perform analytical tasks; these include classification, detection, and segmentation. This is such as irregulaties in the detection of the coronary arteries based on the use of a Transformer-based network for automated Coronary Artery Branch Labeling in Cardiac CT Angiography. *IEEE Trans. Image Process. Comput. Med.* 2023, **12**, 1291–1301.

38. Rao, S.; Li, Y.; Ramakrishnan, R.; Hassaine, A.; Canoy, D.; Cleland, J.; Lukasiewicz, T.; Salimi-Khorshidi, G.; Rahimi, K.; Shishir Rao, O. An Explainable Transformer-Based Deep Learning Model for the Prediction of Incident Heart Failure. *IEEE J. Biomed. Health Inf.* 2022, **26**, 3362–3372.

39. Wang, Y.; Zhang, W. A Dense RNN for Sequential Four-Chamber View Left Ventricle Wall Segmentation and Cardiac State Estimation. *Front. Bioeng. Biotechnol.* 2021, **9**, 696227.

40. Ding, C.; Wang, S.; Jin, X.; Wang, Z.; Wang, J. A Novel Transformer-Based ECG Dimensionality Reduction Stacked Auto-Encoders for Arrhythmia Beat Detection. *Med. Phys.* 2023, **50**, 5897–5912.

41. Ding, Y.; Xie, W.; Wong, K.R.E.; Liao, Z. DE-MRI Myocardial Fibrosis Segmentation and a Classification Model Based on Multi-Scale Self-Supervision and Transformer. *Comput. Methods Programs Biomed.* 2022, **226**, 107049.

42. Hu, R.; Chen, J.; Zhou, L. A Transformer-Based Deep Neural Network for Arrhythmia Detection Using Continuous ECG Signals. *Comput. Biol. Med.* 2022, **144**, 105325.

43. Recurrent Neural Networks (RNNs) are known for their ability to model long-term dependencies and are crucial for capturing the intricate details of cardiac structures. Unlike traditional feed-forward neural networks that process inputs in a one-directional manner, RNNs are designed to handle sequences of data. This is achieved through their internal memory, which allows them to retain information from previous inputs and use it in the processing of new data. In the case of medical data in the form of echocardiography, and cardiac MRI segmentation, RNNs have shown promising performance. They also excel in handling the sequential and temporal aspects of both MRI

43. Gutiérrez, P.; Sigurðarson, G.; Yilmaz, A.; Aragüés, C. *Cardiac Lesions Identification and Segmentation and Generative Pre-Trained Transformer for Cardiac Abnormality Detection*. Available online at <https://physionet.org/contest/bnd01/p001/> (accessed on 20 February 2024). Wang and Zhang [39] also considered the segmentation of the left ventricle wall in four-chamber view cardiac sequential images. RNN was applied to provide detailed information for the initial image, while LSTM to generate the segmentation result: this approach increases accuracy. Another RNN application in the field of cardiology was presented by Muraki et al. [13].

44. Lecesne, E.; Simon, A.; Garreau, M.; Barone-Rochette, G.; Fouard, C. *Segmentation of Cardiac Infarction in Delayed-Enhancement MRI Using Probability Map and Transformers-Based Neural Networks*. *Comput. Methods Programs Biomed.* **2023**, *242*, 107841.

45. Ahmadi, N.; Tsang, M.Y.; Gu, A.N.; Tsang, T.S.M.; Abolmaesumi, P. *Transformer-Based Spatio-Temporal Analysis for Classification of Aortic Stenosis Severity from Echocardiography Cine RN Series*. *IEEE Trans. Med. Imaging* **2021**, *40*, 366–376.

46. Han, T.; Ai, D.; Li, X.; Fan, J.; Song, H.; Wang, Y.; Yang, J. *Coronary Artery Stenosis Detection via Proposal-Shifted Spatial-Temporal Transformer in X-Ray Angiography*. *Comput. Biol. Med.* **2023**, *153*, 106546.

4.2.6. Spiking Neural Networks J.; Liu, P.; Zhang, C. *CAC-EMVT: Efficient Coronary Artery Calcium Segmentation with Multi-Scale Vision Transformers*. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021; pp. 1462–1467.

47. Deng, K.; Meng, Y.; Gao, D.; Bridge, J.; Shen, Y.; Lip, G.; Zhao, Y.; Zheng, Y. *TransBridge: A Lightweight Transformer for Left Ventricle Segmentation in Echocardiography*. In *Simplifying Implantable Devices for their Energy Efficiency and Real-time Processing Capabilities*; Noble, J.A., Aylward, S., Grimwood, A., Min, Z., Lee, S.-L., Hu, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 63–72.

48. Alabdullah, M.; Kainth, A. *This paper proposes a lightweight and efficient model to reduce the complexity and computation time of the transformation*. This is crucial especially for wearable medical devices. *Medical Neural Networks for Heart Monitor in Phonocardiogram Recordings*. In Proceedings of the 2022 Computing in Cardiology (CinC), Tampere, Finland, 4–7 September 2022. a highly efficient alternative for ECG classification, setting a new standard in continuous cardiac health monitoring technologies.

49. Meng, L.; Tan, W.; Ma, J.; Wang, R.; Yin, X.; Zhang, Y. *Enhancing Dynamic ECG Heartbeat Classification with Lightweight Transformer Model*. *Artif. Intell. Med.* **2022**, *124*, 102236.

50. SNNS, however, are more computationally efficient (connected to the high level of computational speed and real-time performance). Pasi, A.; Sla, C.; Vargiu, W. *SNNs in Cardiology*; Jelena, M.; Slobodan, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–14.

51. Feng, Y.; Geng, S.; Chu, J.; Fu, Z.; Hong, S. *Building and Training a Deep Spiking Neural Network for ECG Classification*. *Biomed. Signal Process. Control* **2022**, *77*, 103749.

52. Yan, Z.; Zhai, J.; Wong, M. *Energy Efficient ECG Classification with Spiking Neural Network*. *Biomed. Signal Process. Control* **2021**, *63*, 102170.

53. Kovács, P.; Samiee, K. *Arrhythmia Detection Using Spiking Variable Projection Neural Networks*. **2.7. Generative Adversarial Networks** In Proceedings of the 2022 Computing in Cardiology (CinC), Tampere, Finland, 4–7 September 2022; Volume 49.

55. Singh, A.; Kumar, M.; GMDAS, T.; Gupta, S. Sparse Modes Decomposition and Super-Exponential Transform-based Techniques for Multi-Level Classification of Cardiac Arrhythmia in ECG Signals. *IEEE Access* **2024**, *11*, 1201–1214. This study introduces a novel technique for ECG signal analysis, utilizing sparse modes decomposition and super-exponential transformation to achieve high classification accuracy. The proposed method is particularly effective for multi-level classification of various cardiac arrhythmias.

56. Kiladze, M.R.; Lyakhova, U.A.; Lyakhov, P.A.; Nagornov, N.N.; Vahabi, M. Multimodal Neural Network for Recognition of Cardiac Arrhythmias Based on 12-Lead Electrocardiogram Signals. *IEEE Access* **2023**, *11*, 133744–133754. This research presents a multimodal neural network architecture designed to recognize 12-lead ECG signals. The system integrates multiple layers of neural networks to analyze different types of data, aiming to improve the accuracy and robustness of arrhythmia detection.

57. Li, Z.; Calvet, J. F. Extraction of ECG Features with Spiking Neurons for Decreased Power Consumption in Embedded Devices. *Extraction of ECG Features with Spiking Neurons for Decreased Power Consumption in Embedded Devices*. In Proceedings of the 2023 19th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Funchal, Portugal, 3–5 July 2023; pp. 1–6. This work explores the use of spiking neurons for ECG feature extraction. It highlights the potential for reduced power consumption in embedded devices by utilizing the inherent properties of spiking neurons to process ECG signals more efficiently.

58. Revalth, T.R.; Sathiyabrahma, B.; Sarkar, S. Diagnosing Cardiovascular Disease (CVD) Using Generative Adversarial Network (GAN) in Retinal Fundus Images. *Ann. Rom. Soc. Cet. Biol.* **2021**, *25*, 2563–2572. Available online: <http://annalsofrcsb.ro> (accessed on 20 February 2024). This study demonstrates the use of a Generative Adversarial Network (GAN) to analyze retinal fundus images for cardiovascular disease diagnosis. The GAN is trained to generate images that are indistinguishable from real patient data, which is then used to identify key features associated with diseases like Hypertensive Retinopathy (HR) and Cholesterol Embolization Syndrome (CES).

59. Chen, J.; Yang, G.; Khan, H.R.; Zhang, H.; Zhang, Y.; Zhao, S.; Mohiaddin, R.H.; Wong, T.; Firmin, D.N.; Keegan, J. JAS-GAN: Generative Adversarial Network Based Joint Atrium and Scar Segmentations on Unbalanced Atrial Targets. *IEEE J. Biomed. Health Inf.* **2021**, *26*, 103–114. This research introduces JAS-GAN, a generative adversarial network designed to handle unbalanced datasets for atrial segmentation. It aims to generate realistic images for training and research, especially in scenarios where access to real patient data is limited.

60. Zhang, Y.; Feng, J.; Guo, X.; Ren, Y. Comparative Analysis of U-Net and U-MLMB-GAN for the Cardiobvascular Segmentation of the Ventricles in the Heart. *Comput. Methods Programs Biomed.* **2022**, *215*, 106614. This study compares two segmentation methods: U-Net and U-MLMB-GAN. It highlights the significant feature of GANs in medical imaging, which allows for image-to-image translation, enabling different perspectives of the same anatomical structure without multiple imaging modalities.

61. Decourt, C.; Duong, L. Semi-Supervised Generative Adversarial Networks for the Segmentation of the Left Ventricle in Pediatric MRI. *Comput. Biol. Med.* **2020**, *123*, 103884. This work explores the use of semi-supervised GANs for left ventricle segmentation in pediatric MRI. It addresses the challenge of limited training data by generating synthetic data to improve model performance.

62. Duddal, O.; Pardal, J.; Radke, R.; Vidal, M.L.B.; Fischer, A.J.; Bauer, U.M.M.; Sarikouch, S.; Berger, F.; Beerbaum, P.; Baumgartner, H.; et al. Utility of Deep Learning Networks for the Generation of Artificial Cardiac Magnetic Resonance Images in Congenital Heart Disease. *BMC Med. Imaging* **2020**, *20*, 113. This study demonstrates the utility of deep learning networks in generating artificial cardiac magnetic resonance (CMR) images for congenital heart disease. The generated images are used to support diagnosis and treatment planning.

2.8. Graph Neural Networks

If the data format is approached differently, as in non-Euclidean space in the form of graphs, it can be understood in terms of vertices (i.e., objects). Then, the concept of Graph Neural Networks (GNNs) can be applied. All relations in this type of neural network are expressed as those between nodes and edges of the graph. These networks are designed to handle graph data that form a critical aspect in medical fields, especially when intricate relationships and connections between data points are essential for accurate diagnosis and health condition analysis. This principle of operation is useful in medical imaging, especially in neuroimaging and molecular imaging, where understanding complex relationships is crucial [51][99]. In the field of cardiology, GNNs have been effectively employed in several key areas. They have been used in the classification of polar maps in cardiac perfusion imaging, a critical technique for assessing heart muscle activity and blood flow. Another significant application of GNNs in cardiology is the estimation of left ventricular ejection fraction in echocardiography. This measurement is vital for evaluating heart health, specifically in assessing the volume of

66. Gao, R.; Praveen, M.; Reddy, G.T.; Reddy, K.; Li, J.; Hou, Z.; Li, Y.; Zhou, S.K. *Computational Model of the Heart*; Springer: Berlin/Heidelberg, Germany, 2020. This work provides a comprehensive model of the heart, including its structure, function, and disease states, using a combination of spatial-temporal graph analysis and convolutional networks. It highlights the importance of spatial-temporal graph analysis in understanding complex biological systems.

67. Yang, H.; Zhen, X.; Chi, Y.; Zhang, L.; Hua, X.-S. **CPR-GCN: Conditional Partial-Residual Graph**

Convolutional Network in Automated Anatomical Labeling of Coronary Arteries. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

structures, an essential feature in medical imaging where patient data can greatly differ. The architecture of GNNs

68. Chakravarty, A.; Sarkar, T.; Ghosh, N.; Sethuraman, R.; Sheet, D. **Learning Decision Ensemble Using a Graph Neural Network for Comorbidity Aware Chest Radiograph Screening.** In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in

Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1234–1237.

transformers such as the Detection Transformer (DETR) for tasks related to vision analysis [100], the Swin-Transformer [101], the Vision Transformer (ViT) [102], and the Data-Efficient Image Transformer (DeiT) [102]. The Genetic Algorithm and a Fuzzy Logic Classifier for Heart Disease Diagnosis. *Evol. Intell.* 2020, 13, 185–196.

2D representations of the input data (images). In turn, the ViT converts input to a series of fixed-size non-

70. Praveen, M.; Reddy, G.T.; Reddy, K.; Lakshmanan, K.; Rainput, D.S.; Kaluri, R.; Gautam, S. **Hybrid Transformer** [101], the Vision Transformer (ViT) [102], and the Data-Efficient Image Transformer (DeiT) [102]. The

DETR is dedicated to object detection which also includes manual analytical processes, and it uses CNN to learn

185–196. 2D representations of the input data (images). In turn, the ViT converts input to a series of fixed-size non-

72. Praveen, M.; Reddy, G.T.; Reddy, K.; Lakshmanan, K.; Rainput, D.S.; Kaluri, R.; Gautam, S. **YOLO-Based ROI Selection for Joint Encoding and Compression of Medical Images via Reorientation through Super Resolution Network**

73. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. **YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors.** arXiv 2022, arXiv:2207.02696.

74. Zhuang, Z.; Jin, R.; Joseph, R.; Rai, A.N.; Yuan, Y.; Zhuang, S. **Automatic Segmentation of Left Ventricle in Echocardiography Based on YOLOv3 Model to Achieve Constraint and Positioning.**

Comput. Math. Methods Med. 2021, 2021, 3772129.

The application of transformer networks allows for a deeper understanding of cardiac function, which aids in refining diagnostic methods and improving treatment strategies. For example, Jungiewicz et al. focused on

75. Alamelu, V.; Thilagamani, S. **Lion Based Butterfly Optimization with Improved YOLO-v4 for Heart Disease Prediction Using IoT.** *Inf. Technol. Control.* 2022, 51, 692–703.

76. Sminyo, D.; Bikunov, A.; Sivayogi, R.; Devatiare, R.; Gusev, O.; Aras, K.; Gams, A.; Koppel, A.; Efimova, I. **By Correction Genetic Algorithm-Based Personalized Models of Human Cardiac Action Potential (PAP).** *PLoS ONE* 2020, 15, e0231695.

7Explained, A. et al. Studies on Disease and the Comparison of Artificial Classification Algorithms for their finding in Disease Prediction with Genetic Algorithms for Early Detection. In: Selection and peer review process of the the 2021 Mobarikiai and International Conference on Computing (MAGIC) model even surpasses it. In Pakistan on 15 to 17 July 2021. It can effectively be applied to diagnose coronary angiography. Zhang

et al. [37] present a Topological Transformer Network (TTN) for automated coronary artery branch labeling in 78. Alizadehsani, R.; Roshanzamir, M.; Abdar, M.; Beykikhoshk, A.; Khosravi, A.; Nahavandi, S.; Cardiac CT Angiography (CCTA). The TTN, inspired by the success of transformers in sequence data analysis, Plawiak, P.; Tan, R.S.; Acharya, U.R. Hybrid Genetic-Discretized Algorithm to Handle Data treats vessel branch labeling as a sequence labeling learning problem. It introduces a unique topological encoding Uncertainty in Diagnosing Stenosis of Coronary Arteries. *Expert Syst.* 2020, **39**, e12573.

to represent spatial positions of vessel segments within the arterial tree, enhancing classification accuracy. The network also includes a segment depth loss function to address the class imbalance between primary and secondary branches. The effectiveness of a CNN is demonstrated in CTA scans, where it achieves

unprecedented results, outperforming existing methods in overall branch labeling and side branch identification. 80. Souza Filho, E.M.; Fernandes, P.A.; Pereira, N.C.A.; Mesquita, C.F.; Gismondi, R.A. *Ethics, TTNs mark a departure from traditional methods, representing the first transformer-based vessel branch labeling*

method in the field. The integration of this method into computer-aided diagnosis systems can enhance the 81. Mathur, P.; Srivastava, S.; Xu, X.; Mehta, J.L. Artificial Intelligence, Machine Learning, and generation of cardiovascular disease diagnosis reports, thereby improving patient outcomes in cardiac care. *Cardiovascular Disease Clin. Med. Insights Cardiol.* 2020, **14**, 1179516820927104.

82. Miller, D.D. Machine Intelligence in Cardiovascular Medicine. *Cardiol. Rev.* 2020, 28, 53–64.

wall-motion abnormalities in the left ventricle. The core innovation is the integration of a co-attention mechanism within the Spatial Transformer Network (STN), which improves feature extraction between frames for smoother motion fields and enhanced interpretability in noisy 3D echocardiography images. Additionally, a novel temporal 83. Swathy, M.; Saruladha, K. A Comparative Study of Classification and Prediction of Cardio-
Vascular Diseases (CVD) Using Machine Learning and Deep Learning Techniques. *ICT Express* 2021, 8, 109–116.

regularization term guides the motion of the left ventricle, producing smooth and realistic cardiac displacement

84. Gao, H., Wang, D., Gourishankar, A., Goyal, J., Manothu, B., Najarian, K., and Geng, S. A new segmentation for X-Ray Coronary Angiography Using Ensemble Methods with Deep Learning and Filter-Based Features. *BMJ. Imaging* 2022, **2**, 10.

strain following ischemic injury. This study contributes a novel tool for cardiac imaging and opens new possibilities for early detection and interventions in myocardial injuries. *Am J Cardiol* 2021; 111: 1887.

Cardiac Image Segmentation with Deep Learning. Appl. Sci. 2021, 11, 1965.

86. **Random Forests** for Medical Image Segmentation in the Context of Cardiac Image Segmentation: A Comparative Study. *Journal of Global Research in Engineering Sciences*, 2021, 14(2), 578-589 and the segmentation performed (especially for tasks requiring precise localization of

anatomical structures in heart images) to be inaccurate. Like CNN and the YOLO algorithm, this approach requires a large amount of good-quality data and the involvement of significant computational resources. Careful hyperparameter tuning and regularization techniques can overcome this disadvantage, but potentially increase the complexity of the training process.

2.10. Quantum Neural Networks

2.10 Quantum Neural Networks

86. Sander, J., de Vos, B.D., Isgum, I. Automatic Segmentation with Detection of Local Segmentation Failures in Cardiac MRI. *Sci. Rep.* 2020, 10, 21769.

89. Lin, A.; Chen, B.; Xu, J.; Zhang, Z.; [103](#); [104](#). DS-TransUNet: Dual Swin Transformer U-Net for
red Medical Image Segmentation. *IEEE Trans. Instrum. Meas.* **2022**, *71*, 4005615.

90. Kereciorlu, H.; Dedi, C.; Gunes, S.; Tuncer, Y.; Yilmaz, A. A Modified Capsule Network Algorithm for OCT and the second-order image Segmentation. *Pattern Recognition Lett.* **2021**, *143*, 104e1042. [\[81\]](#) Indeed, Shahwar et al. [\[105\]](#) showed the potential of QNNs in the classification of Alzheimer's detection, and Ullah et al. [\[20\]](#) proposed a quantum version of the Fully Convolutional Neural Network (FCNN) as applied to a challenge that concerned the Semantic Segmentation: Review. *IEEE Access* **2021**, *9*, 83002–83024. This allowed for a prediction accuracy of over 80 percent. However, the approach based on quantum neural networks requires further improvement. When it comes to interventional practice, QNNs have the potential for stenosis detection in X-ray coronary angiography [\[106\]](#), and they can be also applied to selecting medicines for patients with high accuracy [\[107\]](#)[\[108\]](#). Thus, QNNs may also provide some insight into the reduction in computational cost.

92. Hu, X.; Liu, A.; Fu, S.; Cai, Lian, Y.; Guo, L.; Yang, X.; Marelli, A.; Li, Y. Recurrent Disease Progression Networks for Modelling Risk Trajectory of Heart Failure. *PLoS ONE* **2021**, *16*, e0245177.

93. Fu, Q.; Dong, H. An Ensemble Unsupervised Spiking Neural Network for Objective Recognition. *Neurocomputing* **2021**, *419*, 47–58.

3. Evaluation Metrics in Medical Image Segmentation

94. Raha, A.; Kim, K.K. A Novel Spiking Neural Network for ECG Signal Classification. *J. Sens. Sci. Technol.* **2021**, *30*, 20–24.

Artificial Intelligence has the chance to become a high-precision tool in medicine. However, there are certain 95. Kırımlı, Y.; Şen, E. A Visual Explanation Approach for Spiking Neural Networks using Spiking-Integrated Performance Metrics. *Comput. Vis. Image Underst.* **2021**, *111*, 10377.

96. Kazeminia, S.; Baur, C.; Kuijper, A.; van Ginneken, B.; Navab, N.; Albarqouni, S.; Mukhopadhyay, A. GANs for Medical Image Analysis. *Artif. Intell. Med.* **2020**, *109*, 101938.

97. Olender, M.L.; Nezami, E.R.; Athanasiou, I.S.; De La Torre Hernández, J.M.; Edelman, E.R. Understood by Users [\[102\]](#). For example, overfitting between training and testing datasets will reduce the accuracy of the Translational Challenges for Synthetic Imaging in Cardiology. *Eur. Heart J. Digit. Health* **2021**, *2*, 559–560.

98. Wierleke, H.; Voigt, M. Principles of Artificial Intelligence and its Application in Cardiovascular Medicine. *Clin. Cardiol.* **2023**, *47*, e24148.

99. Hasan Rafi, T.; Shubair, R.M.; Farhan, F.; Hogue, Z.; Mohd Quayyum, F. Recent Advances in Computer-Aided Medical Diagnosis Using Machine Learning Algorithms with Optimization Techniques. *IEEE Access* **2021**, *9*, 137847–137868.

Moreover, an important element in improving the effectiveness of cardiology data segmentation is the collection of as much reliable, good-quality data as possible while keeping class balance in mind. This procedure should take 100. Carlson, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. Available online: <https://github.com/facebookresearch/detr> (accessed on 20 February 2024).

mitigate bias in AI-based algorithms. Another issue related to data is the application of the open data policy 101. Huang, J.; Ren, L.; Feng, L.; Yang, F.; Yang, L.; Yan, K. AI Empowered Virtual Reality Integrated following UNESCO guidelines (especially for scientific applications, and research) so that more efficient AI Systems for Sleep Stage Classification and Quality Enhancement. *IEEE Trans. Neural. Syst. Rehabil. Eng.* **2022**, *30*, 1494–1503.

in the collection, storage, and use of medical data is essential for the development of reliable AI systems in 102. Jang, J.; Arai, A.; Ferencz, G.; Akbari, S. The establishment of standards for the quality, interoperability, and 103. Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training Deep Quantum Neural Networks. *Nat. Commun.* **2020**, *11*, 808.

104. Lantuejoul, C.; Mathy, P.; Nersisyan, Y.; Gradišar, M.; Kandagadilasak, D. *Book as the Application of Kerenidis et al. Quantum Algorithms for Methods of Neural Networks and Applications to Medical Image Classification*. Quantum 2022, 6, 281.

105. Shahwar, T.; Zafar, J.; Almogren, A.; Zafar, H.; Rehman, A.U.; Shafiq, M.; Hamam, H. Automated Detection of Alzheimer's via Hybrid Classical Quantum Neural Networks. *Electronics* 2022, 11, 721.

106. Ovalle-Magallanes, E.; Avina-Cervantes, J.G.; Cruz-Aceves, I.; Ruiz-Pinales, J. Hybrid Classical–Quantum Convolutional Neural Network for Stenosis Detection in X-Ray Coronary Angiography. *Expert Syst. Appl.* 2022, 189, 116112.

107. Kumar, A.; Choudhary, A.; Tiwari, A.; James, C.; Kumar, H.; Kumar Arora, P.; Akhtar Khan, S. An Investigation on Wear Characteristics of Additive Manufacturing Materials. *Mater. Today Proc.* 2021, 47, 3654–3660.

108. Belli, C.; Sagingalieva, A.; Kordzanganeh, M.; Kenbayev, N.; Kosichkina, D.; Tomashuk, T.; Melnikov, A. Hybrid Quantum Neural Network For Drug Response Prediction. *Cancers* 2023, 15, 2705.

109. Pregowska, A.; Perkins, M. Artificial Intelligence in Medical Education: Technology and Ethical Risk. Available online: <https://ssrn.com/abstract=4643763> (accessed on 20 February 2024).

110. Rastogi, D.; Johri, P.; Tiwari, V.; Elngar, A.A. Multi-Class Classification of Brain Tumour Magnetic Resonance Images Using Multi-Branch Network with Inception Block and Five-Fold Cross Validation Deep Learning Framework. *Biomed. Signal Process. Control* 2024, 88, 105602.

Retrieved from <https://encyclopedia.pub/entry/history/show/127136>