
Artificial Intelligence-Based Support in Cardiology | Encyclopedia.pub

https://encyclopedia.pub/entry/56493 1/13

Artificial Intelligence-Based Support in
Cardiology
Subjects: Computer Science, Artificial Intelligence

Contributor: Zofia Rudnicka , Klaudia Proniewska , Mark Perkins , Agnieszka Pregowska

Artificial Intelligence (AI)-based algorithms, in particular, Deep Neural Networks (DNNs), have recently

revolutionized image creation. Precise segmentation of lesions may contribute to an efficient diagnostics process

and a more effective selection of targeted therapy. For example, an AI-based algorithm for the segmentation of

pigmented skin lesions has been developed, which enables diagnosis in the earlier stages of the disease, without

invasive medical procedures. With flexibility and scalability, AI can be also considered an efficient tool for cancer

diagnosis, particularly in the early stages of the disease.
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1. Introduction

Computer-assisted medicine in general, and cardiac modeling in particular, is by no means an exception from the

successful application of continuous advancements in bioelectricity and biomagnetism . Along with

enhancements in ECG measuring techniques and a constant increase in computational resources, these advances

have provoked the development of many different heart models that can support an automatic and accurate

diagnosis of the heart, beat by beat. Knowledge of the anatomical heart structure is an important part of the

evaluation of cardiac functionality. Thus, cardiac images are one of the significant techniques applied in the

assessment of patient health. At present, the image segmentation procedure is usually performed manually, with

an expert sitting in front of a monitor moving a pointer, and not only does this require time and resources to

accomplish, but it is also subject to error depending on the experience of the expert. In sum, this procedure is time-

consuming, inefficient, very often error-prone, and highly user-dependent . Therefore, the development of an

efficient, automatic segmentation procedure is of great importance . However, certain limitations mean that the

automatic segmentation of cardiac images is still an open and difficult task. For example, in the case of 2D

echocardiographic images, a low signal-to-noise ratio, speckles, and low-quality images form some of the

difficulties in determining the contour of the ventricles. Moreover, significant variability in the shape of heart

structures makes it difficult to develop universal automated algorithms. Thus, medical image segmentation has

become a significant area of AI application in medicine. An image can be segmented in several ways, including

semantic segmentation (the assignment of each pixel or voxel of an image to one of the classes) , instance

segmentation (pixels of an image are assigned to the instances of the object) , and panoptic segmentation (the

connection of the semantic and instance segmentation) . The main disadvantage of semantic segmentation is the
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poor definition of the problem (sometimes multiple instances can be abstracted into a single class), which

translates into inadequate recognition of image details. As said, in the case of medical images, segmentation is

often performed manually, making it a time-consuming and error-based process. Many algorithms have been

proposed to support the automatic segmentation of medical images. It is also worth stressing that imaging methods

in cardiology have particular characteristics that can affect their reproducibility and reliability. These include spatial,

temporal, and contrast resolution as well as tissue penetration and artifact susceptibility. The ultimate goal is to

enable fully automatic segmentation of any clinically acquired CT or MRI. Indeed, MRI offers higher resolution in

comparison to ultrasound and spatial resolutions impact the ability to visualize tiny structures in the heart and blood

vessels. In turn, echocardiography can provide higher temporal resolution compared to MRI or CT processes,

which affects the ability to capture dynamic changes in heart function. Thus, different modalities have different

capabilities in distinguishing between different tissue types and contrast agents. MRI often excels in contrast

resolution compared to other diagnostics methods. Therefore, for medical image segmentation (mostly semantic

segmentation), different types of neural networks are applied , see also Table 1. The basic concept of AI

application in cardiology is presented in Figure 1.

Figure 1. Conceptual scheme of the application of AI in cardiology.

Table 1. Top list of used AI models in cardiology, including interventional cardiology.
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AI/ML Model Application Fields (In General) Application Fields (In
Cardiology) References

ANNs

classification, pattern recognition, image
recognition, natural language processing

(NLP), speech recognition, recommendation
systems, prediction, cybersecurity, object

manipulation, path planning, sensor fusion

prediction of atrial fibrillation,
acute myocardial infarctions,
and dilated cardiomyopathy
detection of the structural

abnormalities in heart tissues

RNNs

ordinal or temporal problems (language
translation, speech recognition, NLP image
captioning), time series prediction, music

generation, video analysis, patient
monitoring, disease progression prediction

segmentation of the heart and
subtle structural changes
cardiac MRI segmentation
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AI/ML Model Application Fields (In General) Application Fields (In
Cardiology) References

LSTMs

ordinal or temporal problems (language
translation, speech recognition, NLP, image

captioning), time series prediction, music
generation, video analysis, patient

monitoring, disease progression prediction

segmentation and
classification of 2D echo

images
segmentation and

classification of 3D Doppler
images

segmentation and
classification of video
graphics images and

detection of the AMI in
echocardiography

CNNs

pattern recognition,
segmentation/classification, object detection,

semantic segmentation, facial recognition,
medical imaging, gesture recognition, video

analysis

cardiac image segmentation
to diagnose CAD

cardiac image segmentation
to diagnose Tetralogy of

Fallot
localization of the coronary

artery atherosclerosis
detection of cardiovascular

abnormalities
detection of arrhythmia

detection of coronary artery
disease

prediction of the survival
status of heart failure patients
prediction of cardiovascular

disease
LV dysfunction screening
prediction of premature
ventricular contraction

detection

Transformers

NLP, speech processing, computer vision,
graph-based tasks, electronic health records,

building conversational AI systems and
chatbots

coronary artery labeling
prediction of incident heart

failure
arrhythmia classification

cardiac abnormality detection
segmentation of MRI in case

of cardiac infarction
classification of aortic

stenosis severity
LV segmentation

heart murmur detection
myocardial fibrosis

segmentation
ECG classification

SNNs pattern recognition, cognitive robotics, SNN
hardware, brain–machine interfaces,

ECG classification
detection of arrhythmia
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2. Artificial Intelligence-Based Support in Cardiology

2.1. Application of the You-Only-Look-Once (YOLO) Algorithm

The You-Only-Look-Once (YOLO) algorithm is an approach that is based on deep learning for object detection 

. It depends on the idea that images pass only once through the neural network, and hence the name. This is

performed by dividing the input image into a grid and predicting for each grid cell the bounding box and the
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AI/ML Model Application Fields (In General) Application Fields (In
Cardiology) References

neuromorphic computing extraction of ECG features

GANs
image-to-image translation, image synthesis,
and generation, data generation for training,
data augmentation, creating realistic scenes

CVD diagnosis
segmentation of the LA and

atrial scars in LGE CMR
images

segmentation of ventricles
based on MRI scans

left ventricle segmentation in
pediatric MRI scans

generation of synthetic
cardiac MRI images for

congenital heart disease
research

GNNs

graph/node classification, link prediction,
graph generation, social/biological network
analysis, fraud detection, recommendation

systems

classification of polar maps in
cardiac perfusion imaging
analysis of CT/MRI scans
prediction of ventricular

arrhythmia
segmentation of cardiac

fibrosis
diagnosis of cardiac

condition: LV motion in
cardiac MR cine images
automated anatomical

labeling of coronary arteries
prediction of CAD

automation of coronary artery
analysis using CCTA

screening of cardio, thoracic,
and pulmonary conditions in

chest radiograph

QNNs
optimization of hardware operations, user

interfaces
classification of ischemic

heart disease

GA
optimization techniques, risk prediction, gene

therapies, medicine development
classification of heart disease
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probability of that class. The algorithm predicts different values related to the object, such as the coordinates of the

center of the bounding box around the object, the height and width of the bounding box, the class of the object, and

the probability, or the confidence of the prediction. This way of working may cause the algorithm to detect the

object multiple times. To avoid duplicate detections of the same object the algorithm uses non-maximum

suppression (NMS), which works by calculating a metric called Intersection over Union or (IOU) between the

boxes. If the IOU between two boxes is larger than a certain threshold, the box with a higher confidence score is

chosen and the other box is ignored. There have been many improvements to the YOLO algorithm that provide

higher accuracy, faster performance, improved scalability, and greater flexibility for customization.

In advancing the diagnosis of cardiovascular diseases (CVDs), the YOLOv3 algorithm was developed for the

precise segmentation of the left ventricle (LV) in echocardiography. This method leverages YOLOv3’s powerful

feature extraction capabilities to accurately locate key areas of the LV, including the apex and bottom, facilitating

the acquisition of detailed LV subimages. Employing the Markov random field (MRF) model for initial identification

and processing, the method then applies sophisticated techniques including non-linear least-squares curve fitting

for exact LV endocardium segmentation. YOLOv3’s role is pivotal in ensuring the accuracy and efficiency of this

process, highlighting its significance in the early detection and analysis of CVD . On the other hand, in the realm

of cardiac health monitoring and medical image processing, the Lion-Based Butterfly Optimization model with

Improved YOLOv4 was introduced as described by Alamelu and Thilagamani, . When applied in the prediction

of heart disease based on echocardiography, it was found that a refined version of the segmentation algorithm

significantly improves (with an average of 99% accuracy) the analysis of echocardiographic images, offering more

accurate and thorough insights into cardiac health, thus marking a substantial advancement in cardiac diagnostics

technology.

The proposed YOLO-based approach for image segmentation is fast and efficient. It is also quite efficient in terms

of the use of computing resources, which is of key importance considering the huge amounts of cardiological data

that need to be processed. However, this may reduce its level of accuracy compared to more complex

segmentation algorithms, which is crucial in the case of cardiac images. YOLO-based image segmentation may

also lead to a reduction in spatial resolution in segmentation masks, especially for small or complex structures in

radiological images.

2.2. Genetic Algorithms

The analysis of medical data can also be approached using metaheuristic methods such as Genetic Algorithms

(GAs), Evolutionary Algorithms (EAs) in particular, and Artificial Immune Systems (AISs) that search the possible

solution space based on mechanisms taken from the theory of evolution and natural immune systems. GAs can

also be used to improve diagnosis as well as the selection of targeted therapy in the field of cardiology. Reddy et

al.  applied GAs to the diagnostics of early-stage heart disease, which has crucial implications in the selection of

further therapy methods. For example, GAs allowed for the optimization of classification rules. As a consequence,

the level of accuracy increased and the computational cost was reduced (due to the simplification of the selection

process). GAs can also be applied to the determination of personalized parameters of the cardiomyocyte
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electrophysiology model . Here, the Cauchy mutation was applied. In most cases, GAs were used to limit the

number of parameters that are then used as input to another AI-based algorithm, such as a Support Vector

Machine (SVM) . Genetic Algorithms can effectively search for optimal segmentation solutions in the case of

heart image segmentation, where anatomical structures may have different shapes. However, GAs may exhibit

difficulties with complex limitations or domain-specific knowledge in cardiac image segmentation tasks. On the

other hand, GAs can also be effective in the optimization of the input parameters to neural networks. They are

inherently robust concerning noise and local optima. This is an important feature taking into account motion

artifacts or imaging noise in cardiac image segmentation. A huge disadvantage of GAs is the cost of computing

large search spaces or high-dimensional feature spaces, which is crucial, especially for real-time computations or

in clinical settings (such as may occur in cardiology applications). Thus, finding the optimal parameter can be

difficult and time-consuming.

2.3. Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks whose structure and principle of operation are to some extent

modeled on the functioning of fragments of the real nervous system (the brain) . This computational invention

contributes to the development of medical imaging, especially in cardiology, where their design, inspired by the

human brain, enables them to interpret complex patterns within medical data effectively. ANNs consist of layers

composed of several neurons, which apply specific weights and biases to the inputs. These neurons utilize non-

linear activation functions that enable the network to detect complex patterns and relationships that linear functions

might overlook. The output layer plays a pivotal role in making predictions or classifications based on the analysis,

such as identifying signs of heart disease, classifying different cardiac conditions, or determining the severity of a

disorder . In cardiology, the ability to detect conditions accurately and at an early stage is of paramount

importance, and the application of ANNs for the analysis of medical images is an important development in this

area. Considering the high global prevalence of cardiovascular diseases, the application of ANNs in cardiac

imaging may substantially improve diagnostic techniques . ANNs provide an efficient computational tool to

detect structural abnormalities in heart tissues. They also play a vital role in assessing cardiac function, evaluating

important metrics such as ejection fraction, and analysis of blood flow patterns, essential for diagnosing heart

failure or valvular heart disease.

ANNs can automatically learn hierarchical features from raw image data without the need to manually extract

features, which is beneficial for segmenting complex organs such as the heart. However, ANN application in the

field of medical image processing requires converting two-dimensional images to one-dimensional vectors. This

increases the number of parameters and increases the cost of calculation. However, as in the case of YOLO-based

segmentation algorithms, an ANN-based approach also requires large and good-quality training data to provide

high accuracy. 
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Another neural network that has been applied to medical image processing is the Convolutional Neural Network

(CNN). As opposed to traditional neural networks such as ANNs, which typically process data in a straightforward,

sequential manner, CNNs can discern spatial relationships within datasets. This is due to the way they are

designed and constructed, intended as they are to maintain and interpret the spatial structure of input data, an

attribute that is vital for the accurate assessment of medical images. For example, Roy et al.  applied CNNs to

cardiac image segmentation to diagnose coronary artery disease (CAD). CNNs were used to analyze 2D X-ray

images, significantly enhancing image segmentation accuracy and setting new standards in medical image

analysis. Similarly, as in Gao et al. , Galea et al.  proposed combining U-Net and DeepLabV3+ CNN

architectures for the segmentation of cardiac images from smaller datasets. Tandon et al.  applied CNNs in

cardiology with a specific focus on cardiovascular imaging for patients with Repaired Tetralogy of Fallot (RTOF). A

CNN originally designed for ventricular contouring was retrained and adapted to the complexities of RTOF. This

enabled an increase in algorithm accuracy. In turn, Stough et al.  developed a fully automatic method for

segmenting heart substructures in 2D echocardiography images using CNNs that was validated against a robust

dataset, and Sander and Išgum  focused on enhancing the segmentation of cardiac structures in cardiac MRI.

This method integrates automatic segmentation with an assessment of segmentation uncertainty to identify

potential local failures. The measures of predictive uncertainty were calculated and trained by another CNN to

detect local segmentation errors for potential expert correction. This approach combining automatic segmentation

with manual correction of detected errors could significantly reduce the time required for expert segmentation.

In the context of cardiology, fully connected layers of CNNs are responsible for synthesizing information to perform

critical analytical tasks. These include classifying different cardiac conditions, detecting anomalies such as

irregularities in heart size or shape, and making predictive assessments based on a comprehensive analysis of

cardiac structure and function. CNNs are particularly good at handling complex datasets from various imaging

modalities in cardiology, including MRI, CT scans, and ultrasound . The strength of CNNs lies in their ability to

handle high-dimensional data and to effectively capture the spatial structures within medical images in cardiology.

This leads to more precise and comprehensive analyses of cardiac health. However, in the case of sparse or

partial input data, their use is difficult and does not provide high prediction accuracy, while high segmentation

accuracy is associated with high computational costs. Nor do CNNs take into account spatial relations in images

which is important in the case of cardiology. To overcome this limitation, Capsule Networks (CNs) were introduced

. Their output is in the form of vectors that enable some spatial relations to be saved. The disadvantage of this

approach is the lack of verification on a large dataset.

2.5. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are known for their ability to model long-term dependencies and are crucial for

capturing the intricate details of cardiac structures. Unlike traditional feedforward neural networks that process

inputs in a one-directional manner, RNNs are designed to handle sequences of data. This is achieved through their

internal memory, which allows them to retain information from previous inputs and use it in the processing of new

data . In the case of medical data in the form of echocardiography, and cardiac MRI segmentation, RNNs have

shown promising performance . They also excel in handling the sequential and temporal aspects of both MRI

Convolutional Neural Network Features for Coronary Artery Disease Diagnosis Based on Cardiac
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and CT data, crucial for monitoring dynamic changes in cardiac tissues over time . In turn, Wahlang et al. 

combined RNNs and their variations in Long Short-Term Memory (LSTM) successfully in the segmentation and

classification of 2D echo images, 3D Doppler images, and video graphic images. Wang and Zhang  also

considered the segmentation of the left ventricle wall in four-chamber view cardiac sequential images. RNN was

applied to provide detailed information for the initial image, while LSTM to generate the segmentation result: this

approach increases accuracy. Another RRN application in the field of cardiology was presented by Muraki et al. .

Here, simple RNNs, LSTM, and other RNN variations (such as Gated Recurrent Units (GRU)) were successfully

used to detect acute myocardial infarction (AMI) in echocardiography.

RNNs have proven to be well suited to managing the sequential and temporal characteristics inherent in MRI and

CT data, a capability that is essential for accurately tracking the dynamic alterations in cardiac tissues due to the

possibility of effective capturing of long-range non-linear dependencies, such as modeling the risk trajectory of

heart failure . However, one limitation of RNNs is connected with vanishing or exploding gradients.

2.6. Spiking Neural Networks

Calculations related to the analysis of cardiac data are very time-consuming and involve a great deal of computing

resources. One alternative that can potentially reduce computational cost could be Spiking Neural Networks

(SNNs). Currently, SNNs are not yet as accurate in comparison to traditional neural networks: they have

characteristics that are more similar to biological neurons . They may also be advantageous in wearable and

implantable devices for their energy efficiency and real-time processing capabilities. This makes them ideal for

continuous cardiac monitoring, as they require less frequent recharging or battery replacement, a significant benefit

for devices like cardiac monitors and pacemakers. For example, Rana and Kim  modify the synaptic weights

such as to be binary. This operation provides a reduction in computational complexity and power consumption. This

is crucial, especially in the context of wearable monitors where continuous monitoring is key but the constraints of

power and computational resources are limiting factors. Their binarized SNN model may be a highly efficient

alternative for ECG classification, setting a new standard in continuous cardiac health monitoring technologies.

SNNs, however, are more computationally efficient (connected to the high level of computational speed and real-

time performance). As a consequence, SNNs consume less energy, which translates into better use of hardware

resources. However, their learning algorithms require improvement (in terms of accuracy gains), in comparison, for

example, to the accuracies achieved by the application of CNNs . In the case of SNNs, the requirement of

increasingly powerful hardware is also of high importance. SNNs also have a significant limitation in practical

applications due to the smaller number of available tools, libraries, and structures in comparison to other neural

network types. SNNs also provide worse results in terms of accuracy compared to traditional approaches. To fully

exploit the potential of SNNs, including detecting anomalies in biomedical signals and designing more detailed

networks, the SNNs’ learning mechanisms/rules need to be improved. 

2.7. Generative Adversarial Networks

43. Gaudilliere, P.L.; Sigurthorsdottir, H.; Aguet, C.; Van Zaen, J.; Lemay, M.; Delgado-Gonzalo, R.
Generative Pre-Trained Transformer for Cardiac Abnormality Detection. Available online:
https://physionet.org/content/mitdb/1.0.0/ (accessed on 20 February 2024).
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Generative Adversarial Networks (GANs) are network architectures that consist of two core components: the

generator and the discriminator. The generator shoulders the responsibility of creating data that faithfully emulates

specific data (artificial data identical to real data) to cheat the discriminator. It initiates the process with an input of

random noise, meticulously refining it through multiple layers of neural network architecture. Each layer integrated

within the generator network fulfills a distinct role, harnessing techniques such as convolutional or fully connected

layers. These layers operate cohesively to progressively metamorphose the initial noise input into an output that

becomes increasingly indistinguishable from the target data. A discriminator is designed to distinguish artificial data

(produced by a generator) from real data based on small nuances. Thus, the core concept of this solution is to train

two networks that compete with each other. As a consequence, they are expected to produce more authentic data

. GANs seem to be promising computational tools to elevate patient care and improve clinical outcomes, in

particular in the field of cardiology. First, the most important GAN application field is CVD diagnosis . Retinal

fundus images were used as input to the network. This approach led to the analysis of microstructural alterations

within retinal blood vessels to pinpoint pivotal risk factors associated with CVD, such as Hypertensive Retinopathy

(HR) and Cholesterol-Embolization Syndrome (CES). Moreover, the incorporation of a retrained ImageNet model

for customized image classification further bolstered predictive accuracy.

GANs have shown exceptional proficiency in handling complex and varied cardiac datasets. They generate highly

realistic images, aiding training and research, particularly where access to real patient data is limited. GANs are

instrumental in enlarging existing datasets and creating diverse and extensive data for training more accurate and

robust diagnostic models. In addition to image generation, GANs are adept at image-to-image translation tasks, a

significant feature in medical imaging . They can transform MRI images into CT scans, offering different

perspectives of the same anatomical structure without needing multiple imaging modalities. This is particularly

beneficial in scenarios where certain imaging equipment might be unavailable. However, the main disadvantages

of GANs are the complex training needed that does not necessarily lead to hoped-for results, a tendency to overfit,

and high computational costs. Moreover, GANs are difficult to interpret, which is of key importance in medicine,

especially in cardiology.

2.8. Graph Neural Networks

If the data format is approached differently, as in non-Euclidean space in the form of graphs, it can be understood

in terms of vertices (i.e., objects). Then, the concept of Graph Neural Networks (GNNs) can be applied . All

relations in this type of neural network are expressed as those between nodes and edges of the graph. These

networks are designed to handle graph data that form a critical aspect in medical fields, especially when the

intricate relationships and connections between data points are essential for accurate diagnosis and health

condition analysis. This principle of operation is useful in medical imaging, especially in neuroimaging and

molecular imaging, where understanding complex relationships is crucial . In the field of cardiology, GNNs

have been effectively employed in several key areas. They have been used in the classification of polar maps in

cardiac perfusion imaging, a critical technique for assessing heart muscle activity and blood flow. Another

significant application of GNNs in cardiology is the estimation of left ventricular ejection fraction in

echocardiography. This measurement is vital for evaluating heart health, specifically in assessing the volume of
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blood the left ventricle pumps out with each contraction . This allows for more accurate analyses through an

understanding of the intricate graph structures of the heart’s imagery. GNNs are also being utilized in analyzing

CT/MRI scans. This approach can also be used to interpret the relationships and structures within the scan,

providing detailed insights into various conditions and helping in diagnosis and treatment planning .

GNNs provide a powerful tool for understanding and interpreting complex data structures, such as those found in

medical image processing. One of the key strengths of GNNs is their adaptability to varying input sizes and

structures, an essential feature in medical imaging where patient data can greatly differ. The architecture of GNNs

is tailored to process and interpret graph-structured data, making it a powerful tool in areas such as medical image

processing where data often forms complex networks. This specialized structure of GNNs sets them apart in their

ability to handle data that is inherently interconnected, such as neurological networks or molecular structures. It is

also worth stressing that GNNs were created for tasks that cannot be effectively solved by other types of networks

based on input data in Euclidean space. However, GNNs are difficult to interpret. On the other hand, computational

cost is also a crucial parameter. Here, QNNs may provide some insight, while the GA can effectively help in the

optimization of the input parameters to neural networks.

2.9. Transformers

One further type of neural network that has recently come into focus in the field of medicine concerns transformers.

These learn rules based on the context and tracking the relations between the data. Originally, they were networks

used for natural language processing (NLP). Their effectiveness in these tasks resulted in the development of

transformers such as the Detection Transformer (DETR) for tasks related to vision analysis , the Swin-

Transformer , the Vision Transformer (ViT) , and the Data-Efficient Image Transformer (DeiT) . The

DETR is dedicated to object detection which also includes manual analytical processes, and it uses CNN to learn

2D representations of the input data (images). In turn, the ViT converts input to a series of fixed-size non-

overlapping patches and treats them as a token. Each of them encodes the spatial position of each part of the

image to provide spatial information, while the spatial information of the pixels is lost during tokenization. However,

ViTs require large training datasets. On the other hand, DeiTs also provide high accuracy in the case of small

training datasets, while Swin-Transformers allow the cost of calculations to be reduced. They process an image

divided into overlapping areas showing tokens at multiple scales with a hierarchical structure using a shifted

window (local self-attention). The transformer principle of operation is based on the self-attention mechanism. This

enables the network to decide on the importance of different parts of the input data for future prediction (i.e.,

weight). This may be beneficial for the evaluation of the relationships between different regions in medical images.

The application of transformer networks allows for a deeper understanding of cardiac function, which aids in

refining diagnostic methods and improving treatment strategies. For example, Jungiewicz et al. focused on

stenosis detection in coronary arteries, comparing different variants of the Inception Network with the ViT . They

analyzed small fragments from coronary angiography videos, highlighting the role of dataset configuration in model

performance. A key innovation in their approach is the use of Sharpness-Aware Minimization (SAM) alongside

Vision Transformers (VTs), which enhances the accuracy and reliability of stenosis detection. They also employed
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Explainable AI techniques to understand the differences in classification performance between the models. Their

findings indicate that while Convolutional Neural Networks generally outperform transformer-based architectures,

the gap narrows significantly with the addition of SAM to VTs. In some measures, the SAM-VT model even

surpasses other models. It turned out that ViT can effectively be applied to diagnose coronary angiography. Zhang

et al.  present a Topological Transformer Network (TTN) for automated coronary artery branch labeling in

Cardiac CT Angiography (CCTA). The TTN, inspired by the success of transformers in sequence data analysis,

treats vessel branch labeling as a sequence labeling learning problem. It introduces a unique topological encoding

to represent spatial positions of vessel segments within the arterial tree, enhancing classification accuracy. The

network also includes a segment-depth loss function to address the class imbalance between primary and

secondary branches. The effectiveness of a TTN is demonstrated in CCTA scans, where it achieves

unprecedented results, outperforming existing methods in overall branch labeling and side branch identification.

TTNs mark a departure from traditional methods, representing the first transformer-based vessel branch labeling

method in the field. The integration of this method into computer-aided diagnosis systems can enhance the

generation of cardiovascular disease diagnosis reports, thereby improving patient outcomes in cardiac care. 

This approach significantly enhances the detection and analysis of myocardial ischemia and infarction by tracking

wall-motion abnormalities in the left ventricle. The core innovation is the integration of a co-attention mechanism

within the Spatial Transformer Network (STN), which improves feature extraction between frames for smoother

motion fields and enhanced interpretability in noisy 3D echocardiography images. Additionally, a novel temporal

regularization term guides the motion of the left ventricle, producing smooth and realistic cardiac displacement

paths. The CA-STN outperforms traditional methods that rely on heavy regularization functions, marking a new

standard in cardiac motion tracking. Strain analysis using the Co-Attention STNs aligns with matched SPECT

perfusion maps, illustrating the clinical utility of 3D echocardiography for localizing and quantifying myocardial

strain following ischemic injury. This study contributes a novel tool for cardiac imaging and opens new possibilities

for early detection and interventions in myocardial injuries.

Thus, an approach based on transformers in cardiological data segmentations offers advantages such as global

context modeling, parallel processing, attention mechanisms, transfer learning, and interpretability for cardiac

image segmentation. However, transformers process the input data sequentially, which may cause some important

information to be missed and the segmentation performed (especially for tasks requiring precise localization of

anatomical structures in heart images) to be inaccurate. Like CNN and the YOLO algorithm, this approach requires

a large amount of good-quality data and the involvement of significant computational resources. Careful

hyperparameter tuning and regularization techniques can overcome this disadvantage, but potentially increase the

complexity of the training process.

2.10. Quantum Neural Networks

Recently, some work has also been devoted to the development of quantum neural networks (QNNs) that are

based on the idea of quantum mechanics . These may have huge potential to speed up calculations and

reduce the computational costs associated with them. This approach can be developed in two ways related to the
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segmentation of medical images. The first is the use of quantum circuits to train classical neural networks, and the

second is the design and training of quantum networks, as proposed by Mathur et al. . Indeed, Shahwar et al.

 showed the potential of QNNs in the classification of Alzheimer’s detection, and Ullah et al.  proposed a

quantum version of the Fully Convolutional Neural Network (FCNN) as applied to a challenge that concerned the

classification of ischemic heart disease. This allowed for a prediction accuracy of over 80 percent. However, the

approach based on quantum neural networks requires further improvement. When it comes to interventional

practice, QNNs have the potential for stenosis detection in X-ray coronary angiography , and they can be also

applied to selecting medicines for patients with high accuracy . Thus, QNNs may also provide some insight

into the reduction in computational cost.

3. Evaluation Metrics in Medical Image Segmentation

Artificial Intelligence has the chance to become a high-precision tool in medicine. However, there are certain

technical risks (TERs) connected with the application of AI in clinical and educational practice, including algorithm

performance, legal regulation, and safety. For example, it is known that small, even imperceptible changes in the

training dataset can drastically change the results of predictions, which in medicine can have very serious

consequences and influence learning. The key to the evaluation of AI adaptability is to use an appropriate metric to

assess the correctness and accuracy of different kinds of forecasts including clinical prognoses and for this to be

understood by users . For example, overfitting between training and testing datasets will reduce the accuracy of

the algorithm. Other crucial factors that influence the qualitative efficiency of the AI-based algorithm’s dataset

include data availability issues. However, even if developers do not have sufficient quantity and quality of data,

cross-validation can be applied . This procedure helps avoid overfitting by the selection of a subset. Thus, the

choice of a proper evaluation metric depends on the specific task type. The binary classifier Dice coefficient (also

called the Sørensen–Dice index) and the Index of Union (IoU) are most commonly used in medical image

segmentation metrics. However, in the field of cardiology, accuracy is of particular concern.

Moreover, an important element in improving the effectiveness of cardiology data segmentation is the collection of

as much reliable, good-quality data as possible while keeping class balance in mind. This procedure should take

into account input data diversity that helps AI models better generalize unseen cases while their reliability is

improved. It is also necessary to provide diverse and representative input data whenever possible, which can help

mitigate bias in AI-based algorithms. Another issue related to data is the application of the open data policy

following UNESCO guidelines (especially for scientific applications, and research) so that more efficient AI

algorithms can be developed in the area of ​​cardiology. Moreover, compliance with ethical and bioethical standards

in the collection, storage, and use of medical data is essential for the development of reliable AI systems in

cardiology. As a consequence, the establishment of standards for the quality, integrity, and interoperability of

cardiology data used in AI applications in cardiology as well as the development of the protocols for the validation

and regulation of AI-based algorithms is of high importance. It is also necessary to develop guidelines on how to

integrate artificial intelligence technologies into cardiology workflows as well as strategies for managing risks

associated with the implementation of AI-based technologies in cardiology. Finally, it should be the responsibility of
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